One-step synthesis of N-doped carbon dots, and their applications in curcumin sensing, fluorescent inks, and super-resolution nanoscopy.

Mikrochim Acta

Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, People's Republic of China.

Published: September 2019

Nitrogen-doped carbon dots (N-CDs) with fluorescence excitation/emission maxima at 365/450 nm were prepared by a one-step hydrothermal approach. The dots possess remarkable photostability, fluorescence blinking and good biocompatibility, and this favors utilization in stochastic optical reconstruction microscopy (STORM). A spatial resolution down to ~60 nm was achieved when imaging HeLa cells using 647-nm laser excitation. This opens new possibilities for various super-resolution techniques based on stochastic optical switching. The remarkable optical properties of the N-CDs also enable them to be applied as invisible security ink for use in patterning, information storage and anti-counterfeiting. Further, it is found that the fluorescence of the N-CDs can be quenched by curcumin with high efficiency due to a combination of inner filter effect and static quenching. Based on this, a fluorometric assay with a detection limit of 21 ng mL was developed for the determination of curcumin. Graphical abstract Schematic representation of the applications of N-doped carbon dots (N-CDs). Curcumin quenches the fluorescence of N-CDs with high efficiency. The remarkable optical properties of the N-CDs enable them to be applied in fluorescent ink, cell imaging and stochastic optical reconstruction microscopy (STORM).

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00604-019-3762-5DOI Listing

Publication Analysis

Top Keywords

carbon dots
12
stochastic optical
12
n-doped carbon
8
dots n-cds
8
optical reconstruction
8
reconstruction microscopy
8
microscopy storm
8
remarkable optical
8
optical properties
8
properties n-cds
8

Similar Publications

Background: Creatinine is a small molecule disease biomarker that reflects kidney function, accurate and effective detection of creatinine will play an important role in the prevention and treatment of diseases. Currently, commonly used creatinine detection methods are limited by expensive instruments, complex sample preparation, many interference factors from biological samples, and environmental factors that can affect the accuracy of the measurement. Therefore, developing a fast, simple, inexpensive, sensitive analysis method that can eliminate background interference and provide multi-detection modes has strong attraction and value.

View Article and Find Full Text PDF

To address the challenges associated with the storage and application of traditional carbon dot (CDs) solutions, this study introduces a cyan fluorescent carbon dot-based hydrogel (CDs-SCH). The hydrogel was synthesized by integrating cyan fluorescent CDs, derived from penicillamine and m-phenylenediamine, with carboxymethylcellulose (CMC) and sodium alginate (SA), which was then mixed with acrylamide (AM). The resulting CDs-SCH hydrogel was extensively characterized, focusing on its morphology, chemical structure, and fluorescence behavior.

View Article and Find Full Text PDF

Novel fluorescence-based and portable detection platforms using nitrogen-doped carbon dots for environmental monitoring of dichloran fungicide.

Spectrochim Acta A Mol Biomol Spectrosc

March 2025

Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathumthani 12120, Thailand; Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand. Electronic address:

A novel fluorescence sensor utilizing label-free nitrogen self-doped carbon dots (NCDs) was developed for the sensitive, selective, and rapid determination of dichloran fungicide, popularly used in agricultural and horticultural fields. The NCDs were prepared from maleic anhydride and diethylenetriamine via a one-step pyrolysis process. They demonstrated strong blue fluorescence emission with a quantum yield of 12 %.

View Article and Find Full Text PDF

Spectrofluorimetric determination of bupropion using N,S co-doped carbon quantum dots: Mechanistic investigation, response surface optimization, and application to pharmaceutical formulations, spiked plasma and environmental samples.

Spectrochim Acta A Mol Biomol Spectrosc

March 2025

Addiction and Neuroscience Research Unit, Health Science Campus, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia. Electronic address:

In this study, a novel analytical method was developed for the determination of bupropion in pharmaceutical formulations and spiked plasma samples using N, S co-doped carbon quantum dots (N,S CQDs) as a fluorescent probe. The N,S CQDs were thoroughly characterized and its optical properties were investigated. The developed N,S CQDs exhibited blue emission at 435 nm upon excitation at 357 nm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!