A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Learning-Based Method for LncRNA-Disease Association Identification Combing Similarity Information and Rotation Forest. | LitMetric

Long non-coding RNA (lncRNA) play critical roles in the occurrence and development of various diseases. The determination of the lncRNA-disease associations thus would contribute to provide new insights into the pathogenesis of the disease, the diagnosis, and the gene treatments. Considering that traditional experimental approaches are difficult to detect potential human lncRNA-disease associations from the vast amount of biological data, developing computational method could be of significant value. In this paper, we proposed a novel computational method named LDASR to identify associations between lncRNA and disease by analyzing known lncRNA-disease associations. First, the feature vectors of the lncRNA-disease pairs were obtained by integrating lncRNA Gaussian interaction profile kernel similarity, disease semantic similarity, and Gaussian interaction profile kernel similarity. Second, autoencoder neural network was employed to reduce the feature dimension and get the optimal feature subspace from the original feature set. Finally, Rotating Forest was used to carry out prediction of lncRNA-disease association. The proposed method achieves an excellent preference with 0.9502 AUC in leave-one-out cross-validations (LOOCV) and 0.9428 AUC in 5-fold cross-validation, which significantly outperformed previous methods. Moreover, two kinds of case studies on identifying lncRNAs associated with colorectal cancer and glioma further proves the capability of LDASR in identifying novel lncRNA-disease associations. The promising experimental results show that the LDASR can be an excellent addition to the biomedical research in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733997PMC
http://dx.doi.org/10.1016/j.isci.2019.08.030DOI Listing

Publication Analysis

Top Keywords

lncrna-disease associations
12
lncrna-disease association
8
computational method
8
gaussian interaction
8
interaction profile
8
profile kernel
8
lncrna-disease
7
learning-based method
4
method lncrna-disease
4
association identification
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!