A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Photocatalytic behavior of biochar-modified carbon nitride with enriched visible-light reactivity. | LitMetric

Photocatalytic behavior of biochar-modified carbon nitride with enriched visible-light reactivity.

Chemosphere

College of Environmental Science and Engineering, Yangzhou University, Jiangsu, 225127, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225127, Jiangsu, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China. Electronic address:

Published: January 2020

Ultra-thin layered structures and modified bandgaps are two efficient strategies to increase the photocatalytic performance of various materials for the semiconductor industry. In the present study, we combined both strategies in one material to form carbon-doped graphitic carbon nitride (g-CN) nano-layered structures by the method of melamine thermal condensation, in the presence of different mass ratios of biochar. The characterization showed that the composite with the best ratio retained the g-CN polymeric framework and the bond with g-CN. The biochar was established via π-π stacking interactions and ether bond bridges. The π-conjugated electron systems provided from biochar can elevate charge separation efficiency. The ultra-thin structure also curtailed the distance of photogenerated electrons migrating to the surface and enlarge specific surface area of materials. The presence of carbon narrowed the bandgap and increased light absorption at a wider range of wavelengths of g-CN. The biochar/melamine ratio of 1:15 presented the best performance, 2.8 and 5 times faster than g-CN degradating Rhodamine and Methyl Orange, respectively. Moreover, the catalyst presented a good stability for 4 cycles. In addition to that, biochar from waste biomass can be considered a sustainable, cost-effective, and efficient option to modify g-CN-based photocatalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2019.124713DOI Listing

Publication Analysis

Top Keywords

carbon nitride
8
g-cn
5
photocatalytic behavior
4
behavior biochar-modified
4
biochar-modified carbon
4
nitride enriched
4
enriched visible-light
4
visible-light reactivity
4
reactivity ultra-thin
4
ultra-thin layered
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!