Novel Autoantibodies Related to Cell Death and DNA Repair Pathways in Systemic Lupus Erythematosus.

Genomics Proteomics Bioinformatics

Department of Rheumatology, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Electronic address:

Published: June 2019

Systemic lupus erythematosus (SLE) is a complex autoimmune syndrome characterized by various co-existing autoantibodies (autoAbs) in patients' blood. However, the full spectrum of autoAbs in SLE has not been comprehensively elucidated. In this study, a commercial platform bearing 9400 antigens (ProtoArray) was used to identify autoAbs that were significantly elevated in the sera of SLE patients. By comparing the autoAb profiles of SLE patients with those of healthy controls, we identified 437 IgG and 1213 IgM autoAbs that the expression levels were significantly increased in SLE (P < 0.05). Use of the ProtoArray platform uncovered over 300 novel autoAbs targeting a broad range of nuclear, cytoplasmic, and membrane antigens. Molecular interaction network analysis revealed that the antigens targeted by the autoAbs were most significantly enriched in cell death, cell cycle, and DNA repair pathways. A group of autoAbs associated with cell apoptosis and DNA repair function, including those targeting APEX1, AURKA, POLB, AGO1, HMGB1, IFIT5, MAPKAPK3, PADI4, RGS3, SRP19, UBE2S, and VRK1, were further validated by ELISA and Western blot in a larger cohort. In addition, the levels of autoAbs against APEX1, HMGB1, VRK1, AURKA, PADI4, and SRP19 were positively correlated with the level of anti-dsDNA in SLE patients. Comprehensive autoAb screening has identified novel autoAbs, which may shed light on potential pathogenic pathways leading to lupus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6818352PMC
http://dx.doi.org/10.1016/j.gpb.2018.11.004DOI Listing

Publication Analysis

Top Keywords

systemic lupus
8
lupus erythematosus
8
sle patients
8
sle
5
novel autoantibodies
4
autoantibodies cell
4
cell death
4
death dna
4
dna repair
4
repair pathways
4

Similar Publications

Metabolomic analysis suggests thiamine monophosphate as a potential marker for mesenchymal stem cell transplantation outcomes in patients with SLE.

Lupus Sci Med

March 2025

Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China

Objective: The objective of this research is to identify metabolic markers associated with successful treatment by evaluating the effect of mesenchymal stem cell transplantation (MSCT) on the metabolic profiles of patients with SLE.

Methods: Plasma samples were collected from 20 patients with SLE before and after MSCT. Principal component analysis (PCA) was used to distinguish pretreatment and post-treatment groups and pathway analysis for identifying involved metabolic pathways.

View Article and Find Full Text PDF

The Multifaceted Role of CS1 (SLAMF7) in Immunoregulation: Implications for Cancer Therapy and Autoimmune Disorders.

Exp Cell Res

March 2025

Central Labs, King Khalid University, AlQura'a, Abha, Saudi Arabia; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia. Electronic address:

CS1 (SLAMF7), a pivotal immune receptor, plays a dual role in modulating immune responses in autoimmune diseases and cancer. In autoimmunity, aberrant CS1 signaling contributes to the activation of autoreactive lymphocytes, driving pathologies such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Conversely, in oncology, CS1 serves as a promising immunotherapeutic target, exemplified by the efficacy of the monoclonal antibody Elotuzumab in multiple myeloma.

View Article and Find Full Text PDF

Background: Systemic lupus erythematosus (SLE) was a complex autoimmune disease characterized by a spectrum of clinical and immunological manifestations, with cardiovascular disease (CVD) being a leading cause of morbidity and mortality. Endothelial dysfunction was critical in the pathogenesis of atherosclerosis and other cardiovascular complications in SLE. This study aimed to investigate the correlation between autoantibody levels and endothelial function in SLE patients using ultrasound and serum biomarkers.

View Article and Find Full Text PDF

Systemic lupus erythematosus: one year in review 2025.

Clin Exp Rheumatol

March 2025

Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Italy.

This review highlights key advancements in systemic lupus erythematosus (SLE) research during 2024, covering pathogenesis, novel therapies, biomarkers, and clinical outcomes. Notable findings include new insights into immune dysregulation, promising therapeutic targets, and real-world data confirming the efficacy of anifrolumab and belimumab. Advances in biomarkers enhance disease monitoring, while multidisciplinary approaches improve reproductive outcomes and quality of life.

View Article and Find Full Text PDF

The DNase TREX1 is a substrate of the intramembrane protease SPP with implications for disease pathogenesis.

Cell Mol Life Sci

March 2025

Institute for Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Medizinisch-Theoretisches Zentrum MTZ, Technische Universität Dresden, Fiedlerstraße 42, 01307, Dresden, Germany.

Signal peptide peptidase (SPP) is an ER-resident aspartyl intramembrane protease cleaving proteins within type II-oriented transmembrane segments. Here, we identified the tail-anchored protein Three prime repair exonuclease 1 (TREX1) as a novel substrate of SPP. Based on its DNase activity, TREX1 removes cytosolic DNA acting as a negative regulator of the DNA-sensing cGAS/STING pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!