Four Ways to Fit an Ion Channel Model.

Biophys J

Centre for Mathematical Medicine & Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom. Electronic address:

Published: December 2019

Mathematical models of ionic currents are used to study the electrophysiology of the heart, brain, gut, and several other organs. Increasingly, these models are being used predictively in the clinic, for example, to predict the risks and results of genetic mutations, pharmacological treatments, or surgical procedures. These safety-critical applications depend on accurate characterization of the underlying ionic currents. Four different methods can be found in the literature to fit voltage-sensitive ion channel models to whole-cell current measurements: method 1, fitting model equations directly to time-constant, steady-state, and I-V summary curves; method 2, fitting by comparing simulated versions of these summary curves to their experimental counterparts; method 3, fitting to the current traces themselves from a range of protocols; and method 4, fitting to a single current trace from a short and rapidly fluctuating voltage-clamp protocol. We compare these methods using a set of experiments in which hERG1a current was measured in nine Chinese hamster ovary cells. In each cell, the same sequence of fitting protocols was applied, as well as an independent validation protocol. We show that methods 3 and 4 provide the best predictions on the independent validation set and that short, rapidly fluctuating protocols like that used in method 4 can replace much longer conventional protocols without loss of predictive ability. Although data for method 2 are most readily available from the literature, we find it performs poorly compared to methods 3 and 4 both in accuracy of predictions and computational efficiency. Our results demonstrate how novel experimental and computational approaches can improve the quality of model predictions in safety-critical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6990153PMC
http://dx.doi.org/10.1016/j.bpj.2019.08.001DOI Listing

Publication Analysis

Top Keywords

method fitting
16
ion channel
8
ionic currents
8
safety-critical applications
8
summary curves
8
protocols method
8
short rapidly
8
rapidly fluctuating
8
independent validation
8
method
6

Similar Publications

: The purpose of this study was to quantify the impact of smartphone use while sitting on the toilet on the spinal flexion angles and the time effect. : Measurements of the spinal flexion angles in the sagittal plane were made by thirty participants while they sat on the toilet for 10 min, using a smartphone in either one, both, or neither hand. The individual's forehead, cervical, thoracic and lumbar spinal areas were each fitted with five different inertial motion sensors.

View Article and Find Full Text PDF

Background: Spatial data are often aggregated by area to protect the confidentiality of individuals and aid the calculation of pertinent risks and rates. However, the analysis of spatially aggregated data is susceptible to the modifiable areal unit problem (MAUP), which arises when inference varies with boundary or aggregation changes. While the impact of the MAUP has been examined previously, typically these studies have focused on well-populated areas.

View Article and Find Full Text PDF

Purpose: Sleep (SL), physical activity (PA), and wellbeing (WB) are three factors linked to positive development in adolescence. Despite theoretical support and some empirical evidence of developmental associations between these factors, few studies have rigorously investigated reciprocal associations over time separating between-person and within-person effects, and none have investigated all three in concert. Thus, it remains unclear how the interplay between SL, PA and WB unfolds across time within individuals.

View Article and Find Full Text PDF

International Urogynecology Consultation Chapter 3 Committee 1 - Pessary Management.

Int Urogynecol J

January 2025

Division of Health Services Research & Implementation Science, Southern California Permanente Medical Group, San Diego, CA, USA.

Introduction And Hypothesis: This manuscript is part of the International Urogynecological Consultation (IUC) on Pelvic Organ Prolapse (POP), Chapter 3, Committee 1 focusing on pessary management of POP.

Methods: A narrative review was conducted by an international, multi-disciplinary group of clinicians working in the field of pelvic health following a search of the literature using the MeSH terms "pelvic organ prolapse" OR "urogenital prolapse" OR "vaginal prolapse" OR "uterovaginal prolapse" AND "pessary" OR "support device" OR "intravaginal device." Relevant studies, as determined after review using the Covidence manuscript review platform, were included.

View Article and Find Full Text PDF

Background: Between 2016 and 2023, 3248 cases of circulating vaccine-derived type 2 poliomyelitis (cVDPV2) were reported globally and supplementary immunization activities (SIAs) with monovalent type 2 oral poliovirus vaccine (mOPV2) and novel type 2 oral poliovirus vaccine (nOPV2) targeted an estimated 356 and 525 million children, respectively. This analysis estimates the community-level impact of nOPV2 relative to mOPV2 SIAs.

Methods: We fitted interrupted time-series regressions to surveillance data between January 2016 and November 2023 to estimate the impact of nOPV2 and mOPV2 SIAs on cVDPV2 poliomyelitis incidence and prevalence in environmental surveillance across 37 countries, directly comparing the impact of SIAs in 13 countries where both vaccines were used.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!