Objectives: The aim of this study was to characterise the genomic and phenotypic characteristics of a colistin-resistant Klebsiella pneumoniae isolate causing a lethal infection that was phenotypically resistant to carbapenems and colistin.
Methods: Whole-genome sequencing was performed on an Illumina HiSeq 2500 platform. Genome annotation was performed by the Rapid Annotation using Subsystem Technology (RAST) server. Antimicrobial resistance genes and plasmid replicons were identified using ResFinder 2.1 and PlasmidFinder 1.3, respectively. The isolate was further characterised by plasmid analysis using S1-PFGE and Southern blot hybridisation with a digoxigenin-labelled probe specific for bla RESULTS: The genome of K. pneumoniae LSK16 consists of a 6.02-Mbp chromosome and one plasmid. Multilocus sequence typing (MLST) identified the isolate as ST11, a close variant of the international pandemic clone ST258. The isolate was found to harbour bla, bla, bla, floR and rmtB genes. Of note, a novel fosfomycin resistance glutathione transferase variant was confirmed by PCR and sequencing, with 98.6% (136/138) identity to fosA. Moreover, amino acid substitutions in PmrB (R256G) and PhoQ (D150G) were identified in LSK16, confirming the polymyxin/colistin resistance, although the isolate was negative for mcr genes. Southern blotting and plasmid analysis revealed that the bla gene was harboured on a non-conjugative IncR plasmid (˜165kb).
Conclusion: Here we identified a colistin-resistant K. pneumoniae ST11 strain co-producing KPC-2, FloR, CTX-M-55, SHV-12 and RmtB causing a lethal infection. This study provides new genomic insights into the diversity of K. pneumoniae ST11 prevalent in Zhejiang Province, China.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jgar.2019.08.023 | DOI Listing |
BMC Microbiol
January 2025
Center of Infectious Diseases, West China Hospital, Sichuan University, Guoxuexiang 37, Chengdu, 610041, China.
Background: Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a severe threat for human health and urgently needs new therapeutic approaches. Lytic bacteriophages (phages) are promising clinically viable therapeutic options against CRKP. We attempted to isolate lytic phages against CRKP of sequence type 11 and capsular type 64 (ST11-KL64), the predominant type in China.
View Article and Find Full Text PDFInfect Drug Resist
January 2025
Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, People's Republic of China.
Purpose: is an important pathogenic bacterium in causing urinary tract infection. With the overuse of antibiotics, bacteria resistant to quinolones combined with carbapenems are increasing. In this study, we investigated the epidemiology, molecular characteristics, drug resistance of multidrug-resistant () isolated from urine samples.
View Article and Find Full Text PDFInfect Drug Resist
January 2025
Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
Purpose: To investigate the molecular epidemiology and risk factors of carbapenem-resistant (CRKP) infection.
Patients And Methods: Patient's clinical data and CRKP strains were collected from November 2017 to December 2018 at a tertiary hospital in Wuhan, China. The antimicrobial susceptibilities, carbapenem-resistant genes, multi-locus sequence typing (MLST), homologous analysis, and risk factors for CRKP were determined.
Microbiol Res
January 2025
Research Institute of General Surgery, Jinling Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, China. Electronic address:
Microbiol Spectr
January 2025
Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru.
The emergence of carbapenem-resistant (CRKP) poses a significant public health threat, particularly in low- and middle-income countries (LMICs) with limited surveillance and treatment options. This study examines the genetic diversity, resistance patterns, and transmission dynamics of 66 CRKP isolates recovered over 5 years (2015-2019) after the first case of CRKP was identified at a tertiary care hospital in Lima, Peru. Our findings reveal a shift from to as the dominant carbapenemase gene after 2017.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!