A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Impact of polyethylene glycol polymers on the physicochemical properties and mucoadhesivity of itraconazole nanoparticles. | LitMetric

Impact of polyethylene glycol polymers on the physicochemical properties and mucoadhesivity of itraconazole nanoparticles.

Eur J Pharm Biopharm

School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland; Synthesis and Solid State Pharmaceutical Centre (SSPC), Ireland. Electronic address:

Published: November 2019

Itraconazole (ITR) is a broad-spectrum antifungal drug with a very low solubility. In this work, the application of a heat induced evaporative antisolvent nanoprecipitation process yielded disordered nanoparticles (NPs) of ITR. The inclusion of different types of poly(ethylene glycol) (PEG) allowed PEGylation of NPs by adsorption to be achieved. The NP dispersions were composed of monodispersed particles in a nanometric size range (<290 nm) and although PEGylation had no impact on the average particle size, the surface potential was partially neutralised in the modified NPs. The solid state analysis using powder X-ray diffraction and thermal analysis revealed a disordered, liquid crystalline smectic organisation of the non-PEGylated NPs, while some of the PEGylated NPs were more crystalline. The PEGylated NPs exhibited mucoadhesive potential in stationary conditions (dynamic light scattering analysis) but when flow conditions were applied (nanoparticle tracking analysis and quartz crystal microbalance with dissipation) the particles had mucopenetrative properties. The non-PEGylated ITR NPs did not interact with mucin and therefore, this system was considered as having a mucopenetrative character. This study demonstrates that the properties of NPs made of organic drug molecules can be modified by the addition of polymers, which may impact on their interaction with mucin and therefore on their potential systemic absorption.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpb.2019.09.004DOI Listing

Publication Analysis

Top Keywords

polyethylene glycol
8
impact polyethylene
4
glycol polymers
4
polymers physicochemical
4
physicochemical properties
4
properties mucoadhesivity
4
mucoadhesivity itraconazole
4
itraconazole nanoparticles
4
nanoparticles itraconazole
4
itraconazole itr
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!