Alginate films functionalized with silver sulfadiazine-loaded [Mg-Al] layered double hydroxide as antimicrobial wound dressing.

Int J Biol Macromol

National Nanotechnology Laboratory for Agriculture (LNNA), Embrapa Instrumentation, 1452 XV de Novembro St., 13560-970 São Carlos, SP, Brazil.

Published: December 2019

Alginate (ALG) is an abundant, biocompatible, regenerative, and nontoxic polysaccharide that has potential applications in tissue engineering. Silver sulfadiazine (SDZ) is a topical antibiotic used to control bacterial infection in burns. Aiming to combine the intrinsic alginate characteristics and silver sulfadiazine antimicrobial properties, hydrotalcite ([Mg-Al]-LDH) was used as a host matrix to obtain a system efficient in delivering SDZ from alginate films. SDZ was successfully intercalated in [Mg-Al]-LDH through structural reconstruction. Different solutions were prepared using sodium alginate at 10 wt%, glycerol at 10 wt% as a plasticizer and [Mg-Al]-LDH and [Mg-Al]-LDH/SDZ as fillers at 1 wt% and 5 wt%. Films were obtained by continuous casting and further characterized for their microstructural, mechanical, water barrier and antimicrobial properties. Cytotoxicity tests were also performed on fibroblasts cells. The incorporation of [Mg-Al]-LDH and [Mg-Al]-LDH/SDZ presented neither negative nor positive effects on the mechanical properties and morphology of the alginate films. Moreover, samples containing SDZ exhibited inhibitory activity against S. aureus, E. coli, and S. enterica. The addition of [Mg-Al]-LDH/SDZ even at the highest concentration did not afford a very significant cytotoxicity to the alginate-[Mg-Al]-LDH/SDZ films. These results describe a suitable approach for preparing innovative active wound dressings integrated to efficient drug delivery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2019.09.019DOI Listing

Publication Analysis

Top Keywords

alginate films
12
silver sulfadiazine
8
antimicrobial properties
8
[mg-al]-ldh [mg-al]-ldh/sdz
8
alginate
6
films functionalized
4
functionalized silver
4
silver sulfadiazine-loaded
4
sulfadiazine-loaded [mg-al]
4
[mg-al] layered
4

Similar Publications

Development of sustainable and active food packaging films based on alginate enriched with plant polyphenol carbon dots and layered clay.

Int J Biol Macromol

January 2025

Xiamen Meijiamei New Material Technology Co., Ltd., Xiamen 361110, PR China. Electronic address:

Natural polymer based food packaging has attracted more and more attention, but the lack of active functions of natural polymer hinders its application in the field of active packaging. In this study, chlorogenic acid carbon dots (CGA-CDs) was synthesized mildly using natural plant polyphenol CGA as carbon source, and CGA functionalized layered clays (LDHs@CGA) was introduced as reinforcing agent. Alg active films were fabricated by solution casting method using natural polysaccharide-alginate (Alg), CGA-CDs and LDHs@CGA.

View Article and Find Full Text PDF

In situ growth of defective ZIF-8 on TEMPO-oxidized cellulose nanofibrils for rapid response release of curcumin in food preservation.

Carbohydr Polym

March 2025

Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China. Electronic address:

Uncontrolled release of active agents in active packaging reduces antimicrobial efficacy, hindering the effective protection of perishable products from microbial infection. Herein, a novel defective engineering was proposed to design defective and hollow ZIF-8 structures grown on TEMPO oxidized cellulose nanofibrils (TOCNFs) and use them as fast-reacting nanocarriers for loading and controlled release curcumin (Cur) in sodium alginate (SA) active packaging systems (CZT-Cur-SA). By employing stable chelation between tannic acid (TA) and ZIF-8 zinc ions, the connections between zinc ions and imidazole ligands were severed to form a loose and hollow structure, which facilitates the rapid reaction and release of active ingredients triggered by pH changes in the microenvironment.

View Article and Find Full Text PDF

Dual functionalization of carboxymethyl cellulose and alginate via Passerini three-component reaction to graft two hydrophobic moieties: Toward modular thin films.

Carbohydr Polym

March 2025

Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, CNRS UMR 5223, Ingénierie des Matériaux Polymères, F-69621 Cédex, France. Electronic address:

Passerini reaction was advantageously exploited to hydrophobize carboxymethyl cellulose (CMC) and alginates (ALG) by employing various hydrophobic aldehydes and isocyanides. The Passerini reaction, carried out in ecofriendly conditions, allowed to design never described twofold hydrophobized polysaccharide derivatives via the covalent grafting of two hydrophobic moieties. The modified CMC and ALG products were in-depth characterized to guaranty the success of the modification and to calculate the degrees of substitution (DS).

View Article and Find Full Text PDF

Micro-corrugated chiral nematic cellulose nanocrystal films integrated with ionic conductive hydrogels leads to flexible materials for multidirectional strain sensing applications.

Int J Biol Macromol

January 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China. Electronic address:

Multidirectional strain sensors are of technological importance for wearable devices and soft robots. Here, we report that flexible materials capable of multidirectional anisotropic strain sensing can be constructed leveraging diffusion-induced infiltration of monomers and in situ polymerization of metal ion-containing double network hydrogels in and on the surface of micro-corrugated chiral nematic cellulose nanocrystal/glucose films. Integrating the micro-corrugated cellulose nanocrystal/glucose chiral nematic films with ionic conductive hydrogels of PAA-co-AAm/sodium alginate/Al endows the materials with multidirectional mechanoelectrical resistivity and mechanochromism anisotropy.

View Article and Find Full Text PDF

The isolated Aspergillus flavus NSRN22 was used for green synthesis of silver and selenium nanoparticles (AgNPs and SeNPs). New food packaging films produced by combining each type of NPs with chitosan (CS) or sodium alginate (SA) were characterized. Transmission electron microscopy revealed that the average particle size was lower in case of AgNPs (9 to 14.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!