Background: TheCre/loxP system allows for the temporal and spatial investigation of the expression of a single gene in the nervous system. Current methods of validating conditional knock-out mouse models rely on heterogeneous brain tissue or primary culture. These methods may assess the extent of genetic knockdown in the brain but do not provide age-appropriate, cell-type specific information.
New Method: We isolated specific cell types from adult murine brain using FACS to assess cell type-specific gene expression in conditional mouse models.
Results: We identified robust but incomplete genetic knockdown in microglia isolated from two separate microglia-specific knockout models.
Comparisonwith Existing Methods(s): Genetic knockdown in isolated adult microglia differed significantly from cultured primary microglia.
Conclusions: Differences observed in primary cultured microglia compared to isolated adult microglia suggest that current methods used to validate microglia-specific gene deletion over-estimate deletion efficiency. Assessment of gene expression in isolated adult microglia provides a more accurate assessment of Cre-mediated gene deletion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jneumeth.2019.108422 | DOI Listing |
Biol Direct
January 2025
Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China.
Pancreatic cancer is a lethal disease with an insidious onset, and little is known about its early molecular events. Here, we found that the sterol regulatory element-binding protein 1 (SREBP1) expression is gradually upregulated during the initiation of pancreatic cancer. Through in vitro 3D culture of pancreatic acinar cells and experiments in LSL-Kras;Pdx1-Cre (KC) mice, we found that pharmacological inhibition of SREBP1 suppressed pancreatic tumorigenesis.
View Article and Find Full Text PDFMol Neurodegener
January 2025
Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
Background: HD is a devastating neurodegenerative disorder caused by the expansion of CAG repeats in the HTT. Silencing the expression of mutated proteins is a therapeutic direction to rescue HD patients, and recent advances in gene editing technology such as CRISPR/CasRx have opened up new avenues for therapeutic intervention.
Methods: The CRISPR/CasRx system was employed to target human HTT exon 1, resulting in an efficient knockdown of HTT mRNA.
J Transl Med
January 2025
Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
Background: Targeting exportin1 (XPO1) with Selinexor (SEL) is a promising therapeutic strategy for patients with multiple myeloma (MM). However, intrinsic and acquired drug resistance constitute great challenges. SEL has been reported to promote the degradation of XPO1 protein in tumor cells.
View Article and Find Full Text PDFJ Transl Med
January 2025
School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou, 550000, China.
Background: Human kinesin family member 11 (KIF11) plays a vital role in regulating the cell cycle and is implicated in the tumorigenesis and progression of various cancers, but its role in endometrial cancer (EC) is still unclear. Our current research explored the prognostic value, biological function and targeting strategy of KIF11 in EC through approaches including bioinformatics, machine learning and experimental studies.
Methods: The GSE17025 dataset from the GEO database was analyzed via the limma package to identify differentially expressed genes (DEGs) in EC.
Respir Res
January 2025
Department of Respiratory Intensive Care Unit, First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China.
Background: Acute lung injury (ALI) is a severe condition with multifaceted causes, including inflammation and oxidative stress. This research investigates the influence of m6A (N6-methyladenosine) modification on GBP4, a protein pivotal for macrophage polarization, a critical immune response in ALI.
Methods: Utilizing a mouse model to induce ALI, the study analyzed GBP4 expression in alveolar macrophages.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!