S-acylation is a common post-translational modification of membrane protein cysteine residues with many regulatory roles. S-acylation adjacent to transmembrane domains has been described in the literature as affecting diverse protein properties including turnover, trafficking and microdomain partitioning. However, all of these data are derived from mammalian and yeast systems. Here we examine the role of S-acylation adjacent to the transmembrane domain of the plant pathogen perceiving receptor-like kinase FLS2. Surprisingly, S-acylation of FLS2 adjacent to the transmembrane domain is not required for either FLS2 trafficking or signalling function. Expanding this analysis to the wider plant receptor-like kinase family we find that S-acylation adjacent to receptor-like kinase domains is common, affecting ~25% of Arabidopsis receptor-like kinases, but poorly conserved between orthologues through evolution. This suggests that S-acylation of receptor-like kinases at this site is likely the result of chance mutation leading to cysteine occurrence. As transmembrane domains followed by cysteine residues are common motifs for S-acylation to occur, and many S-acyl transferases appear to have lax substrate specificity, we propose that many receptor-like kinases are fortuitously S-acylated once chance mutation has introduced a cysteine at this site. Interestingly some receptor-like kinases show conservation of S-acylation sites between orthologues suggesting that S-acylation has come to play a role and has been positively selected for during evolution. The most notable example of this is in the ERECTA-like family where S-acylation of ERECTA adjacent to the transmembrane domain occurs in all ERECTA orthologues but not in the parental ERECTA-like clade. This suggests that ERECTA S-acylation occurred when ERECTA emerged during the evolution of angiosperms and may have contributed to the neo-functionalisation of ERECTA from ERECTA-like proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6731221PMC
http://dx.doi.org/10.1038/s41598-019-49302-xDOI Listing

Publication Analysis

Top Keywords

receptor-like kinases
20
adjacent transmembrane
16
s-acylation adjacent
12
transmembrane domain
12
receptor-like kinase
12
s-acylation
11
receptor-like
8
plant receptor-like
8
cysteine residues
8
transmembrane domains
8

Similar Publications

Transmembrane proteins (TMPs) are pivotal components of plant defence mechanisms, serving as essential mediators in the response to biotic stresses. These proteins are among the most complex and diverse within plant cells, making their study challenging. In spite of this, relatively few studies have focused on the investigation and characterization of TMPs in plants.

View Article and Find Full Text PDF

Lattice Light-Sheet Microscopy Allows for Super-Resolution Imaging of Receptors in Leaf Tissue.

Biophys J

December 2024

Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA.

Article Synopsis
  • Plant leaf tissues present challenges for imaging due to chlorophyll and pigments causing background fluorescence.
  • Lattice light-sheet microscopy utilizes Bessel beams to focus on a thin region, enabling the visualization of fluorescent molecules while minimizing interference from surrounding pigments.
  • By combining this technique with STORM super-resolution, researchers observed immune response proteins in Arabidopsis thaliana, revealing significant receptor internalization and changes in protein colocalization, indicating potential immune response pathways.
View Article and Find Full Text PDF

Plant extracellular vesicles contribute to the amplification of immune signals during systemic acquired resistance.

Plant Cell Rep

December 2024

Provincial Key University Laboratory of Plant-Microbe Interactions, College of Biology and Food, Shangqiu Normal University, Shangqiu, China.

Plant extracellular vesicles play a role in systemic acquired resistance by facilitating the transmission of immune signals between plant cells. Extracellular vesicles (EVs) play a critical role in facilitating the transfer of nucleic acids and proteins between plants and pathogens. However, the involvement of plant EVs in intercellular communication and their contribution to the regulation of physiological and pathological conditions in plants remains unclear.

View Article and Find Full Text PDF

Valsa canker, caused by fungal pathogens in Valsa species, is a fungal disease of apple and pear growing in China and even in Asia. Malectin-like kinases play crucial roles in plant recognition of the pathogen-induced signals and subsequent activation of partially host immune responses. However, the role of MEDOS1 (MDS1), a Malectin-like kinase, in plant immunity has not yet been extensively explored.

View Article and Find Full Text PDF

Overactivation of the Transforming Growth Factor Beta (TGF-β) pathway is implicated in the pathogenesis of cytopenias in Myelodysplastic syndromes (MDS) and Acute Myeloid Leukemia (AML). IOA-359 and IOA-360 are potent small molecule inhibitors of the TGF-beta Receptor type I kinase (TGF-βRI, also referred to as ALK5, activin receptor-like kinase 5) that abrogate SMAD phosphorylation in hematopoietic cell lines. Both inhibitors were able to inhibit TGF-β mediated gene transcription at specific doses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!