In this paper, we use a finite difference time domain solver to simulate the near field optical properties of self-assembled microsphere arrays when exposed to an incoherent light source. Such arrays are typically used for microsphere lithography where each sphere acts as a ball lens, focusing ultraviolet light into an underlying photoresist layer. It is well known that arrays of circular features can be patterned using this technique. However, here, our simulations show that additional nanometer scale features can be introduced to the pattern by optimising the sphere dimensions and exposure conditions. These features are shown to arise from the contact points between the microspheres which produce paths for light leakage. For hexagonally close packed arrays, the six points of contact lead to star shapes in the photoresist. These star shapes have subfeature sizes comparable to the current achievable resolution of low-cost fabrication techniques.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6731258PMC
http://dx.doi.org/10.1038/s41598-019-48881-zDOI Listing

Publication Analysis

Top Keywords

self-assembled microsphere
8
microsphere lithography
8
star shapes
8
computer aided
4
aided patterning
4
patterning design
4
design self-assembled
4
lithography sa-msl
4
sa-msl paper
4
paper finite
4

Similar Publications

The detection and analysis of cancer cell exosomes with high sensitivity and precision are pivotal for the early diagnosis and treatment strategies of prostate cancer. To this end, a microfluidic chip, equipped with a cactus-like array substrate (CAS) based on surface-enhanced Raman spectroscopy (SERS) was designed and fabricated for the detection of exosome concentrations in Lymph Node Carcinoma of the Prostate (LNCaP). Double layers of polystyrene (PS) microspheres were self-assembled onto a polyethylene terephthalate (PET) film to form an ordered cactus-like nanoarray for detection and analysis.

View Article and Find Full Text PDF

A new high-sensitivity, low-cost, Surface Enhanced Raman Spectroscopy (SERS) sensor allows for the rapid multiplex detection of foodborne pathogens in raw poultry. Self-assembled microspheres are used to pattern a hexagonal close-packed array of nanoantennas onto a side-polished multimode fiber core. Each microsphere focuses UV radiation to a photonic nanojet within a layer of photoresist on the fiber which allows the nanoantenna geometry to be controlled.

View Article and Find Full Text PDF
Article Synopsis
  • Developed a method for creating tissue models with a complex, multiscale vessel network embedded in acellular hydrogel to study vascular processes.
  • The system allows controlled fluid flow through the network and facilitates cell migration and endothelial growth without interference.
  • Designed for ease of use, this method aims to support research in vascular biology by being compatible with organoid cultures and bioprinting technologies.
View Article and Find Full Text PDF

The composition, microstructure, and electrochemical properties of the two kinds of thin film electrode materials, namely VS/MoS/Ni-IOS and VS/MoS/Ni-foam, were analyzed. The research results indicate that the self-assembled photonic crystal (PhC) templates with adjusted electrophoretic self-assembly processing parameters (100 V cm; 7 min) would lead the specimen to a face-centered closely packed structure. Metallic nickel inverse opal structure (IOS) PhCs whose thickness can be freely regulated simply by electrochemical deposition time.

View Article and Find Full Text PDF

Huge volume changes of bismuth (Bi) anode leading to rapid capacity hindered its practical application in sodium-ion batteries (SIBs). Herein, porous Bi@C (P-Bi@C) microspheres consisting of self-assembled Bi nanosheets and carbon shells were constructed via a hydrothermal method combined with a carbothermic reduction. The optimized P-Bi@C-700 (annealed at 700 °C) demonstrates 359.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!