Tunneling conductance among nanoparticle arrays is extremely sensitive to the spacing of nanoparticles and might be applied to fabricate ultra-sensitive sensors. Such sensors are of paramount significance for various application, such as automotive systems and consumer electronics. Here, we represent a sensitive pressure sensor which is composed of a piezoresistive strain transducer fabricated from closely spaced nanoparticle films deposited on a flexible membrane. Benefited from this unique quantum transport mechanism, the thermal noise of the sensor decreases significantly, providing the opportunity for our devices to serve as high-performance pressure sensors with an ultrahigh resolution as fine as about 0.5 Pa and a high sensitivity of 0.13 kPa. Moreover, our sensor with such an unprecedented response capability can be operated as a barometric altimeter with an altitude resolution of about 1 m. The outstanding behaviors of our devices make nanoparticle arrays for use as actuation materials for pressure measurement.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6731318 | PMC |
http://dx.doi.org/10.1038/s41467-019-12030-x | DOI Listing |
Biotechnol Lett
January 2025
Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran.
Selenium is an essential element with various industrial and medical applications, hence the current considerable attention towards the genesis and utilization of SeNPs. SeNPs and other nanoparticles could be achieved via physical and chemical methods, but these methods would not only require expensive equipment and specific reagents but are also not always environment friendly. Biogenesis of SeNPs could therefore be considered as a less troublesome alternative, which opens an excellent window to the selenium and nanoparticles' world.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014 Shandong, China; Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu 610041 Sichuan, China. Electronic address:
Seawater splitting is increasingly recognized as a promising technique for hydrogen production, while the lack of good electrocatalysts and detrimental chlorine chemistry may hinder further development of this technology. Here, the interfacial engineering of manganese dioxide nanoparticles decorated on NiFe layered double hydroxide supported on nickel foam (MnO@NiFe LDH/NF) is reported, which works as a robust catalyst for alkaline seawater oxidation. Density functional theory calculations and experiment findings reveal that MnO@NiFe LDH/NF can selectively enrich OH and repel Cl in oxygen evolution reaction (OER).
View Article and Find Full Text PDFThis paper explores the process of forming arrays of vertically oriented carbon nanotubes (CNTs) localized on metal electrodes using thin porous anodic alumina (PAA) on a solid substrate. On a silicon substrate, a titanium film served as the electrode layer, and an aluminium film served as the base layer in the initial film structure. A PAA template was formed from the Al film using two-step electrochemical anodizing.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
Conventional dark-tone paints absorb both visible light and near-infrared (NIR) wavelengths, posing a challenge for light detection and ranging (LiDAR) recognition in autonomous driving. To overcome this issue, various chemical and structural coating materials have been explored to selectively reflect NIR. In this study, we newly propose colloidal photonic crystals with a stopband in the NIR range, fabricated through the spontaneous formation of crystalline arrays of silica particles dispersed in a photocurable resin, as a potential solution.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Chemistry, North-Eastern Hill University, Shillong 793 022, India.
The interaction of protein with nanoparticles (NPs) of varying shape and/or size boosts our understanding on their bioreactivity and establishes a comprehensive database for use in medicine, diagnosis, and therapeutic applications. The present study explores the interaction between lysozyme (LYZ) and different NPs like graphene oxide (GO) and zinc oxide (ZnO) having various shapes (spherical, 's', and rod-shaped, 'r') and sizes, focusing on their binding dynamics and subsequent effects on both the protein fibrillation and antimicrobial properties. Typically, GO is considered a promising medium due to its apparent inhibition and prolonged lag phase for LYZ fibrillation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!