-Benzoquinone (BQ) is a lignin-derived inhibitor of biorefinery fermentation strains produced during pretreatment of lignocellulose. Unlike the well-studied inhibitors furan aldehydes, weak acids, and phenolics, the inhibitory properties of BQ, the microbial tolerance mechanism, and the detoxification strategy for this inhibitor have not been clearly elucidated. Here, BQ was identified as a by-product generated during acid pretreatment of various lignocellulose feedstocks, including corn stover, wheat straw, rice straw, tobacco stem, sunflower stem, and corncob residue. BQ at 20 to 200 mg/liter severely inhibited the cell growth and fermentability of various bacteria and yeast strains used in biorefinery fermentations. The BQ tolerance of the strains was found to be closely related to their capacity to convert BQ to nontoxic hydroquinone (HQ). To identify the key genes responsible for BQ tolerance, transcription levels of 20 genes potentially involved in the degradation of BQ in were investigated using real-time quantitative PCR in BQ-treated cells. One oxidoreductase gene, one hydroxylase gene, three reductase genes, and three dehydrogenase genes were found to be responsible for the conversion of BQ to HQ. Overexpression of the five key genes in (, , , , and ) accelerated its cell growth and cellulosic ethanol production in BQ-containing medium and lignocellulose hydrolysates. This study advances our understanding of BQ inhibition behavior and the mechanism of microbial tolerance to this inhibitor and identifies the key genes responsible for BQ detoxification. The insights here into BQ toxicity and tolerance provide the basis for future synthetic biology to engineer industrial fermentation strains with enhanced BQ tolerance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6821965PMC
http://dx.doi.org/10.1128/AEM.01443-19DOI Listing

Publication Analysis

Top Keywords

fermentation strains
12
key genes
12
genes responsible
12
lignin-derived inhibitor
8
biorefinery fermentation
8
pretreatment lignocellulose
8
microbial tolerance
8
cell growth
8
tolerance
6
genes
6

Similar Publications

In this study, Allium sativum, garlic, was selected to isolate endophytic bacteria and to evaluate the antimicrobial, antiviral, antioxidant, and cytotoxic activities of their produced metabolites followed by identification of the biosynthetic gene cluster of the antimicrobial metabolites using Oxford Nanopore Technology (ONT). Two bacterial isolates, C6 and C11, were found to have a broad-spectrum antagonistic effect against four standard microbial strains and were molecularly identified using 16 S ribosomal RNA sequence analysis and deposited in a local culture collection as B. velezensis CCASU-C6, and B.

View Article and Find Full Text PDF

[Mycology, chemical components, bioactivities, and fermentation process regulation of Sanghuang: a review].

Zhongguo Zhong Yao Za Zhi

December 2024

Mycomedicine Research Laboratory, School of Pharmaceutical Science, Hunan University of Chinese Medicine Changsha 410208, China Tertiary Research Lab of TCM Property & Efficacy,National Administration of TCM Changsha 410208, China.

Sanghuang, a famous ethnomedicine widely used in China, Japan, Korea and other countries for a long history, is produced from the dried fruiting bodies of the medical fungi belonging to Sanghuangporus. With abundant bioactive natural chemicals including polysaccharides, flavonoids, triterpenoids, and polyphenols, Sanghuang exhibits anticancer, antioxidant, blood glucose-and lipid-lowering, liver protecting, anti-inflammatory, antimicrobial, and gout symptom-relieving effects, thus demonstrating broad application and development prospects in the pharmaceutical and food fields. However, the sustainable development of Sanghuang resources is limited by the scarce stock of wild resources, the diverse original fungi of cultivated Sanghuang, the inconsistency of local standards of Sanghuang materials or products, and the lagging application of Sanghuangporus mycelia.

View Article and Find Full Text PDF

Gut microbial communities and transcriptional profiles of black soldier fly (Hermitia illucens) larvae fed on fermented sericulture waste.

Waste Manag

January 2025

Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology/ Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China. Electronic address:

Sericulture waste poses significant challenges to industrial and environmental safety. Black soldier fly larvae (BSFL) offer a promising solution for organic waste management by converting it into insect protein. This study aimed to develop a microbial fermented method for utilizing sericulture waste to feed BSFL and explore the underlying mechanisms.

View Article and Find Full Text PDF

Lacto-Fermented Fruits and Vegetables: Bioactive Components and Effects on Human Health.

Annu Rev Food Sci Technol

January 2025

1Department of Food Science and Technology, University of California, Davis, Davis, California, USA; email:

Lacto-fermented fruits and vegetables (FVs) such as kimchi, sauerkraut, and fermented olives and nonalcoholic juices have a long history as dietary staples. Herein, the production steps and microbial ecology of lacto-fermented FVs are discussed alongside findings from human and laboratory studies investigating the health benefits of these foods. Lacto-fermented FVs are enriched in bioactive compounds, including lactic and acetic acids, phenolic compounds, amino acid derivatives such as indole-3-lactic acid, phenyl-lactic acid, γ-aminobutyric acid, and bacteriocins, and beneficial live microbes.

View Article and Find Full Text PDF

The genus , commonly found in fermented foods, is a significant group of lactic acid bacteria (LAB) with potential probiotic properties. Several strains have been proposed as probiotics due to their biotechnological capabilities. However, a few strains may exhibit opportunistic pathogenic behavior, which restricts the widespread use of all strains in food applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!