In this study, a novel transferrin modified liposomal dioscin was prepared by the film dispersion method. The transferrin modified dioscin loaded liposomes (Tf-Lip/Dio) were near-spherical in morphology and had an average particle size of 140.07±1.33 nm, a narrow polydispersity index of <0.2 and a relatively stable zeta potential of -23.7±1.16 mV. The drug entrapment efficiency (EE) and drug loading (DL) of Tf-Lip/Dio were 88.94±1.02% and 4.16±0.05%, respectively. Tf-Lip/Dio exhibited a sustained release characterization of approximately 30% of the total dioscin content after 72 h at 37 °C. Tf-Lip/Dio showed higher cytotoxic efficacy after incubation for 24 h in both HeLa cells and HepG2 cells than in nonmodified liposomes. The enhanced antitumor activity of Tf-Lip/Dio might be due to the increased intracellular uptake, which was corroborated by laser scanning confocal microscopy and flow cytometry. Furthermore, hemolysis experiments preliminarily verified the safety of its intravenous injection. Overall, this study demonstrates Tf-Lip/Dio to be a favorable delivery vehicle for dioscin in future cancer therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2020.16955DOI Listing

Publication Analysis

Top Keywords

transferrin modified
12
modified dioscin
8
dioscin loaded
8
loaded pegylated
4
pegylated liposomes
4
liposomes characterization
4
characterization antitumor
4
antitumor study
4
study novel
4
novel transferrin
4

Similar Publications

Aims: Iron deficiency (ID) is highly prevalent in patients with heart failure (HF) and associated with morbidity and poor prognosis, but pathophysiological mechanisms are unknown. We aimed to identify novel biological pathways affected by ID.

Methods And Results: We studied 881 patients with HF from the BIOSTAT-CHF cohort.

View Article and Find Full Text PDF

Transferrin Protein Corona-Targeted Codelivery of Tirapazamine and IR820 Facilitates Efficient PDT-Induced Hypoxic Chemotherapy on 4T1 Breast Cancer.

ACS Appl Mater Interfaces

December 2024

State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.

Protein corona (PC) formation confers novel biological properties to the original nanomaterial, impeding its uptake and targeting efficacy in cells and tissues. Although many studies discussing PC formation have focused on inert proteins that may inhibit the function of nanomaterials, some functional plasma proteins with intrinsic targeting capabilities can also be adsorbed to the surface of nanomaterials, with active ligand properties to improve the targeting ability. In this approach, nanomaterials are surface-engineered to promote the adsorption of specific functional plasma proteins that are directly targeted to transport nanomaterials to the target site.

View Article and Find Full Text PDF

In this study, an aptamer biosensor for detecting lactoferrin (LF) was developed using piezoelectric quartz-induced bond rupture sensing technology. The thiol-modified aptamer I was immobilized on the gold electrode surface of the quartz crystal microbalance (QCM) through an Au-S bond to specifically bind LF. It was then combined with aptamer-magnetic beads to amplify the mass signal.

View Article and Find Full Text PDF

(1) Background: Drug-induced liver injury is a prevalent global health concern that necessitates urgent development of safe and effective treatment options for patients. Drug-carrying nanoparticles have garnered significant attention for dis-ease treatments due to their capacity to enhance drug solubility, provide drug protection, and prolong release duration, thereby improving drug bioavailability and increasing therapeutic efficacy. We initially present a nanostructured carrier incorporating glycyrrhetinic acid and transferrin.

View Article and Find Full Text PDF

is an obligate intracellular bacterial pathogen that develops within a membrane-bound vacuole called an inclusion. Throughout its developmental cycle, modifies the inclusion membrane (IM) with type III secreted (T3S) membrane proteins, known as inclusion membrane proteins (Incs). Via the IM, manipulates the host cell to acquire lipids and nutrients necessary for its growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!