A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cellular Uptake, Stability, and Safety of Hollow Carbon Sphere-Protected Fe₃O₄ Nanoparticles. | LitMetric

Cellular Uptake, Stability, and Safety of Hollow Carbon Sphere-Protected Fe₃O₄ Nanoparticles.

J Nanosci Nanotechnol

CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China and Institute of High Energy Physics, Beijing 100190, China.

Published: April 2020

Magnetic iron oxide (Fe₃O₄) nanoparticles (NPs) have attracted extensive attentions in biomedical fields such as magnetic resonance imaging (MRI). However, the instability and unfavorable dispersity of bare Fe₃O₄ NPs is a challenge for biomedical applications. Herein, we proposed a strategy using hollow carbon sphere (HCS) as a shell structure to endow Fe₃O₄ NPs better stability, dispersity, as well as biocompatibility. To verify intracellular behaviors and biosafety of HCSdecorated Fe₃O₄ nanoparticles (Fe₃O₄@HCS NPs), the assessment of cellular effects of these NPs based on synchrotron radiation-based techniques were done to explore detailed interaction between Fe₃O₄@HCS NPs and liver cells, HepG2. We found that a large number of NPs were internalized by cells in a time-dependent manner determined by inductively coupled plasma mass spectrometry (ICP-MS), which was further supported by intracellular accumulation of iron via X-ray fluorescence (XRF) imaging. Moreover, confocal imaging showed that these NPs mainly located in the lysosomes where they remained stable and undissolved within 72 hours, which was verified by chemical form characterization of iron via Fe K-edge X-ray adsorption near edge structure (XANES). With the coating shell of HCS, the release of iron ions was prevented even in acidic lysosome and the integrity of lysosomal membrane remained unchanged during the storage of NPs. As a result, Fe₃O₄@HCS NPs exhibited low level of oxidative stress and induced negligible cytotoxicity towards HepG2 cells. Based on the powerful techniques, we demonstrated that the carbon outer layer provides a physical barrier that helps remain excellent properties of magnetic Fe₃O₄ NPs and good dispersity, chemical stability, as well as biocompatibility for potential applications in biomedical fields.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2020.17218DOI Listing

Publication Analysis

Top Keywords

fe₃o₄ nanoparticles
12
fe₃o₄ nps
12
fe₃o₄@hcs nps
12
nps
11
hollow carbon
8
biomedical fields
8
well biocompatibility
8
fe₃o₄
6
cellular uptake
4
uptake stability
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!