Improving Cycling Stability and Rate Capability of High-Voltage LiCoO₂ Through an Integration of Lattice Doping and Nanoscale Coating.

J Nanosci Nanotechnol

Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

Published: April 2020

High-voltage LiCoO₂ has attracted much interest owing to the high specific energy density. But the poor cycling performance and inferior rate capacity of LiCoO₂ at a high voltage (≥4.5 V) has restricted the practical applications. Herein, we propose to improve the electrochemical performances of LiCoO₂ at high voltage through a synergy of Al-doping and Li₂TiO₃-coating. In compared to bare LiCoO₂, Al-doped LiCoO₂ and Li₂TiO₃-coated LiCoO₂, the cycle performance, the rate capability and the polarization of Al-doped and Li₂TiO₃-coated LiCoO₂ shows a larger improvement, which can be attributed to the synergic effects of Al-doping and Li₂TiO₃-coating. Firstly, Al doping expands the interlayer spacing which decreases the Li-ion diffusion barrier and enhances the coefficient of Li-ion diffusion. This benefits to the rate capability. Secondly, Al doping enhances the layered structure stability due to the larger Al-O bonding energy (Δ (Al-O) = 512 kJmol) than that of Co-O (Δ (Co-O) = 368 kJmol). Thirdly, the coating layer of Li₂TiO₃ mitigates the surface side reactions and further enhances the cycling performance. Moreover, the coating layer of Li₂TiO₃ as a Li-conductor is also favorable to the Li diffusion and the rate capability. This synergic strategy can also be extended to the modification of other cathode materials.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2020.17181DOI Listing

Publication Analysis

Top Keywords

rate capability
16
licoo₂
8
high-voltage licoo₂
8
cycling performance
8
licoo₂ high
8
high voltage
8
al-doping li₂tio₃-coating
8
li₂tio₃-coated licoo₂
8
li-ion diffusion
8
coating layer
8

Similar Publications

Introduction: Cyber situational awareness is critical for detecting and mitigating cybersecurity threats in real-time. This study introduces a comprehensive methodology that integrates the Isolation Forest and autoencoder algorithms, Structured Threat Information Expression (STIX) implementation, and ontology development to enhance cybersecurity threat detection and intelligence. The Isolation Forest algorithm excels in anomaly detection in high-dimensional datasets, while autoencoders provide nonlinear detection capabilities and adaptive feature learning.

View Article and Find Full Text PDF

The present study was conducted to evaluate the efficacy of extract against the white spot syndrome virus (WSSV) in black tiger shrimp () following oral administration . The methanol extract derived from the extraction was sprayed into feed at a concentration of 0.0 %, 0.

View Article and Find Full Text PDF

Background: We aimed to explore changes in decision-related brain microstructure, brain functional activities, and functional connectivity, and their correlations with cognitive function in end-stage kidney disease (ESKD) patients undergoing peritoneal dialysis (PD). Furthermore, the impact of dialysis on these changes was examined.

Methods: Thirty ESKD patients undergoing PD, 20 chronic kidney disease (CKD) stage 5 patients without dialysis (predialysis CKD stage 5), and 30 healthy controls (HC) were recruited for the study.

View Article and Find Full Text PDF

Effects of catechins with different structure characteristics on the structure and properties of gluten-catechin covalent complex.

Food Res Int

February 2025

Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu 610065, PR China; The Key Laboratory of Food Science and Technology of Sichuan Province of Education, Sichuan University, Chengdu 610065, PR China. Electronic address:

Effects of catechins with different structure characteristics on the structure and properties of gluten-catechin covalent complex were investigated, and the structure-activity relationship was further explored. Catechins including epicatechin (EC), epigallocatechin (EGC), epicatechin-3-gallate (ECG), and epigallocatechin-3-gallate (EGCG) could successfully covalently bind with gluten through C-N and/or C-S bonds. The physicochemical properties of covalent complex, including particle size, thermal stability, content of free amino groups, free sulfhydryl groups and disulfide bonds, were significantly affected by different catechins, and the action order was: EGCG > ECG > EGC > EC.

View Article and Find Full Text PDF

Rats and mice rapidly update timed behaviors.

Anim Cogn

January 2025

Neuroscience Department, Oberlin College, 173 Lorain St, Oberlin, OH, USA.

Keeping track of time intervals is a crucial aspect of behavior and cognition. Many theoretical models of how the brain times behavior make predictions for steady-state performance of well-learned intervals, but the rate of learning intervals in these models varies greatly, ranging from one-shot learning to learning over thousands of trials. Here, we explored how quickly rats and mice adapt to changes in interval durations using a serial fixed-interval task.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!