Functional Dissection of pri-miR-290~295 in Dgcr8 Knockout Mouse Embryonic Stem Cells.

Int J Mol Sci

Institute of Molecular Medicine, Peking University, 5 Yiheyuan Road, Beijing 100871, China.

Published: September 2019

The DiGeorge syndrome critical region gene 8 (Dgcr8) knockout strategy has been widely used to study the function of canonical microRNAs (miRNAs) in vitro and in vivo. However, primary miRNA (pri-miRNA) transcripts are accumulated in Dgcr8 knockout cells due to interrupted processing. Whether abnormally accumulated pri-miRNAs have any function is unknown. Here, using clustered regularly interspaced short palindromic repeats system/CRISPR-associated protein 9 (CRISPR/Cas9), we successfully knocked out the primary microRNA-290~295 (pri-miR-290~295) cluster, the most highly expressed miRNA cluster in mouse embryonic stem cells (ESCs), in Dgcr8 knockout background. We found that the major defects associated with Dgcr8 knockout in mouse ESCs, including higher expression of epithelial-to-mesenchymal transition (EMT) markers, slower proliferation, G1 accumulation, and defects in silencing self-renewal, were not affected by the deletion of pri-miR-290~290 cluster. Interestingly, the transcription of neighboring gene nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain containing 12(Nlrp12) was upregulated upon the deletion of the pri-miR-290~295 cluster. Together, our results suggested that the major defects in Dgcr8 knockout ESCs were not due to the accumulation of pri-miR-290~295, and the deletion of miRNA genes could affect the transcription of neighboring DNA elements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6770266PMC
http://dx.doi.org/10.3390/ijms20184345DOI Listing

Publication Analysis

Top Keywords

dgcr8 knockout
24
knockout mouse
8
mouse embryonic
8
embryonic stem
8
stem cells
8
pri-mir-290~295 cluster
8
major defects
8
transcription neighboring
8
dgcr8
6
knockout
6

Similar Publications

The excision of specific tRNA-derived small RNAs (tsRNAs), yRNA-derived small RNAs (ysRNAs) and ribosomal RNA-derived small RNAs (rsRNAs) is now well established. Several reports have suggested many of these fragments function much like traditional microRNAs (miRNAs). That said, whereas the expressions of the majority of appreciably expressed miRNAs in HCT116 colon cancer cells are significantly decreased in individual knockouts (KOs) of DROSHA, DGCR8, XPO5, and DICER, on average, only 3.

View Article and Find Full Text PDF

Epididymal acquired sperm microRNAs modify post-fertilization embryonic gene expression.

Cell Rep

September 2024

Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Departments of Genetics and Pediatrics - Penn Epigenetics Institute, Institute of Regenerative Medicine, and Center for Women's Health and Reproductive Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. Electronic address:

Sperm small RNAs have emerged as important non-genetic contributors to embryogenesis and offspring health. A subset of sperm small RNAs is thought to be acquired during epididymal transit. However, the identity of the specific small RNAs transferred remains unclear.

View Article and Find Full Text PDF

METTL3 deficiency leads to ovarian insufficiency due to IL-1β overexpression in theca cells.

Free Radic Biol Med

September 2024

College of Animal Sciences, Jilin University, Changchun, 130062, China. Electronic address:

Premature ovarian insufficiency (POI) is a clinical syndrome characterised by a decline in ovarian function in women before 40 years of age and is associated with oestradiol deficiency and a complex pathogenesis. However, the aetiology of POI is still unclear and effective preventative and treatment strategies are still lacking. Methyltransferase like 3 (METTL3) is an RNA methyltransferase that is involved in spermatogenesis, oocyte development and maturation, early embryonic development, and embryonic stem cell differentiation and formation, but its role in POI is unknown.

View Article and Find Full Text PDF

Small nucleolar RNA host gene 18 controls vascular smooth muscle cell contractile phenotype and neointimal hyperplasia.

Cardiovasc Res

May 2024

William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK.

Aims: Long non-coding RNA (LncRNA) small nucleolar RNA host gene 18 (SNHG18) has been widely implicated in cancers. However, little is known about its functional involvement in vascular diseases. Herein, we attempted to explore a role for SNHG18 in modulating vascular smooth muscle cell (VSMC) contractile phenotype and injury-induced neointima formation.

View Article and Find Full Text PDF

PYCARD (PYD and CARD domain containing), a pivotal adaptor protein in inflammasome assembly and activation, contributes to innate immunity, and plays an essential role in the pathogenesis of atherosclerosis and restenosis. However, its roles in microRNA biogenesis remain unknown. Therefore, this study aimed to investigate the roles of PYCARD in miRNA biogenesis and neointima formation using knockout () mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!