Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Zirconia nanoceramics are interesting materials for numerous high-temperature applications. Because their beneficial properties are mainly governed by the crystal and microstructure, it is essential to understand and control these features. The use of co-stabilizing agents in the sol-gel synthesis of zirconia submicro-particles should provide an effective tool for adjusting the particles' size and shape. Furthermore, alumina-doping is expected to enhance the particles' size and shape persistence at high temperatures, similar to what is observed in corresponding bulk ceramics. Dispersed alumina should inhibit grain growth by forming diffusion barriers, additionally impeding the martensitic phase transformation in zirconia grains. Here, alumina-doped zirconia particles with sphere-like shape and average diameters of ∼ 300 n m were synthesized using a modified sol-gel route employing icosanoic acid and hydroxypropyl cellulose as stabilizing agents. The particles were annealed at temperatures between 800 and 1200 ∘ C and characterized by electron microscopy, elemental analysis, and X-ray diffraction. Complementary elemental analyses confirmed the precise control over the alumina content (0-50 mol%) in the final product. Annealed alumina-doped particles showed more pronounced shape persistence after annealing at 1000 ∘ C than undoped particles. Quantitative phase analyses revealed an increased stabilization of the tetragonal/cubic zirconia phase and a reduced grain growth with increasing alumina content. Elemental mapping indicated pronounced alumina segregation near the grain boundaries during annealing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6766039 | PMC |
http://dx.doi.org/10.3390/ma12182856 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!