A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A computer vision approach to identifying the manufacturer and model of anterior cervical spinal hardware. | LitMetric

Objective: Recent advances in computer vision have revolutionized many aspects of society but have yet to find significant penetrance in neurosurgery. One proposed use for this technology is to aid in the identification of implanted spinal hardware. In revision operations, knowing the manufacturer and model of previously implanted fusion systems upfront can facilitate a faster and safer procedure, but this information is frequently unavailable or incomplete. The authors present one approach for the automated, high-accuracy classification of anterior cervical hardware fusion systems using computer vision.

Methods: Patient records were searched for those who underwent anterior-posterior (AP) cervical radiography following anterior cervical discectomy and fusion (ACDF) at the authors' institution over a 10-year period (2008-2018). These images were then cropped and windowed to include just the cervical plating system. Images were then labeled with the appropriate manufacturer and system according to the operative record. A computer vision classifier was then constructed using the bag-of-visual-words technique and KAZE feature detection. Accuracy and validity were tested using an 80%/20% training/testing pseudorandom split over 100 iterations.

Results: A total of 321 total images were isolated containing 9 different ACDF systems from 5 different companies. The correct system was identified as the top choice in 91.5% ± 3.8% of the cases and one of the top 2 or 3 choices in 97.1% ± 2.0% and 98.4 ± 13% of the cases, respectively. Performance persisted despite the inclusion of variable sizes of hardware (i.e., 1-level, 2-level, and 3-level plates). Stratification by the size of hardware did not improve performance.

Conclusions: A computer vision algorithm was trained to classify at least 9 different types of anterior cervical fusion systems using relatively sparse data sets and was demonstrated to perform with high accuracy. This represents one of many potential clinical applications of machine learning and computer vision in neurosurgical practice.

Download full-text PDF

Source
http://dx.doi.org/10.3171/2019.6.SPINE19463DOI Listing

Publication Analysis

Top Keywords

computer vision
20
anterior cervical
16
fusion systems
12
manufacturer model
8
spinal hardware
8
computer
6
cervical
6
hardware
5
vision approach
4
approach identifying
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!