Intermittent-Excessive and Chronic-Moderate Ethanol Intake during Adolescence Impair Spatial Learning, Memory and Cognitive Flexibility in the Adulthood.

Neuroscience

Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Madrid, Spain. Electronic address:

Published: October 2019

Intermittent and excessive ethanol consumption over very short periods of time, known as binge drinking, is common in the adolescence, considered a vulnerable period to the effects of alcohol in terms of cognitive performance. One of the brain functions most drastically affected by ethanol in adolescent individuals seems to be spatial learning and memory dependent on the hippocampus. In the current study we have focused on the long-lasting effects on spatial learning and memory of intermittent and excessive alcohol consumption compared to chronic and moderate alcohol exposure during adolescence. Five-week old male Wistar rats consumed ethanol for 24 days following two different self-administration protocols that differed in the intake pattern. Spatial learning and memory were evaluated in the radial arm maze. Hippocampal synaptic plasticity was assessed by measuring field excitatory postsynaptic potentials. Hippocampal expression of AMPA and NMDA receptor subunits as well as levels of phosphorylated Ser-GSK3β (the inactive form of GSK3β) were also quantified. Our results show that both patterns of ethanol intake during adolescence impair spatial learning, memory and cognitive flexibility in the adulthood in a dose-dependent way. Nevertheless, changes in synaptic plasticity, gene expression and levels of inactive GSK3β depended on the pattern of ethanol intake.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2019.08.051DOI Listing

Publication Analysis

Top Keywords

spatial learning
20
learning memory
20
ethanol intake
12
intake adolescence
8
adolescence impair
8
impair spatial
8
memory cognitive
8
cognitive flexibility
8
flexibility adulthood
8
intermittent excessive
8

Similar Publications

Cognitive load stimulates neural activity, essential for understanding the brain's response to stress-inducing stimuli or mental strain. This study examines the feasibility of evaluating cognitive load by extracting, selection, and classifying features from electroencephalogram (EEG) signals. We employed robust local mean decomposition (R-LMD) to decompose EEG data from each channel, recorded over a four-second period, into five modes.

View Article and Find Full Text PDF

Spatial protein expression technologies can map cellular content and organization by simultaneously quantifying the expression of >40 proteins at subcellular resolution within intact tissue sections and cell lines. However, necessary image segmentation to single cells is challenging and error prone, easily confounding the interpretation of cellular phenotypes and cell clusters. To address these limitations, we present STARLING, a probabilistic machine learning model designed to quantify cell populations from spatial protein expression data while accounting for segmentation errors.

View Article and Find Full Text PDF

Inferring Multi-slice Spatially Resolved Gene Expression from H&E-stained Histology Images with STMCL.

Methods

January 2025

School of Information Science and Engineering, Yunnan University, Kunming, 650500, Yunnan, China. Electronic address:

Spatial transcriptomics has significantly advanced the measurement of spatial gene expression in the field of biology. However, the high cost of ST limits its application in large-scale studies. Using deep learning to predict spatial gene expression from H&E-stained histology images offers a more cost-effective alternative, but existing methods fail to fully leverage the multimodal information provided by Spatial transcriptomics and pathology images.

View Article and Find Full Text PDF

The subiculum is a main output part of the hippocampal formation and important for learning and memory. According to connection studies, the distal and proximal regions of the subiculum project to the brain regions related to the spatial and emotional memories, respectively. Our previous morphological studies indicated that the ventral subiculum (vSub) consists of two regions, the distal subiculum (Sub1) and the proximal subiculum (Sub2), while the dorsal subiculum (dSub) seemed to comprise only one region (Sub1).

View Article and Find Full Text PDF

Xinnaoxin capsule alleviates neuropathological changes and cognitive deficits in Alzheimer's disease mouse model induced by D-galactose and aluminum chloride via reducing neuroinflammation and protecting synaptic proteins.

J Ethnopharmacol

January 2025

Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Weijin Road, 300072 Tianjin, China. Electronic address:

Ethnopharmacological Relevance: Originally formulated to mitigate high-altitude sickness, Xinnaoxin capsules (XNX) are composed of three traditional Chinese medicines (Rhodiola rosea L., Lycium barbarum L. and Hippophae rhamnoides) with properties of anti-hypoxia, anti-fatigue, and anti-aging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!