Emergent Glassy Dynamics in a Quantum Dimer Model.

Phys Rev Lett

Department of Physics and Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany and Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, D-80799 München, Germany.

Published: July 2019

We consider the quench dynamics of a two-dimensional quantum dimer model and determine the role of its kinematic constraints. We interpret the nonequilibrium dynamics in terms of the underlying equilibrium phase transitions consisting of a Berezinskii-Kosterlitz-Thouless (BKT) transition between a columnar ordered valence bond solid (VBS) and a valence bond liquid (VBL), as well as a first-order transition between a staggered VBS and the VBL. We find that quenches from a columnar VBS are ergodic and both order parameters and spatial correlations quickly relax to their thermal equilibrium. By contrast, the staggered side of the first-order transition does not display thermalization on numerically accessible timescales. Based on the model's kinematic constraints, we uncover a mechanism of relaxation that rests on emergent, highly detuned multidefect processes in a staggered background, which gives rise to slow, glassy dynamics at low temperatures even in the thermodynamic limit.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.123.040601DOI Listing

Publication Analysis

Top Keywords

glassy dynamics
8
quantum dimer
8
dimer model
8
kinematic constraints
8
valence bond
8
first-order transition
8
emergent glassy
4
dynamics
4
dynamics quantum
4
model consider
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!