Strong, long-range interactions present a unique challenge for the theoretical investigation of quantum many-body lattice models, due to the generation of large numbers of competing states at low energy. Here, we investigate a class of extended bosonic Hubbard models with off-site terms interpolating between short and infinite range, thus allowing for an exact numerical solution for all interaction strengths. We predict a novel type of stripe crystal at strong coupling. Most interestingly, for intermediate interaction strengths we demonstrate that the stripes can turn superfluid, thus leading to a self-assembled array of quasi-one-dimensional superfluids. These bosonic superstripes turn into an isotropic supersolid with decreasing the interaction strength. The mechanism for stripe formation is based on cluster self-assembling in the corresponding classical ground state, reminiscent of classical soft-matter models of polymers, different from recently proposed mechanisms for cold gases of alkali or dipolar magnetic atoms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.123.045301 | DOI Listing |
Sensors (Basel)
January 2025
State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
This study has investigated the effects of different annealing temperatures on the microstructure, chemical composition, phase structure, and piezoelectric properties of ZnO films. The analysis focuses on how annealing temperature influences the oxygen content and the preferred c-axis (002) orientation of the films. It was found that annealing significantly increases the grain size and optimizes the columnar crystal structure, though excessive high-temperature annealing leads to structural degradation.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
LPTHE, UMR 7589, CNRS and Sorbonne Université, 75252 Paris Cedex 05, France.
Spontaneous symmetry breaking and more recently entanglement are two cornerstones of quantum matter. We introduce the notion of anisotropic entanglement ordered phases, where the spatial profile of spin-pseudospin entanglement spontaneously lowers the fourfold rotational symmetry of the underlying crystal to a twofold one, while the charge density retains the full symmetry. The resulting phases, which we term entanglement smectic and entanglement stripe, exhibit a rich Goldstone mode spectrum and a set of phase transitions as a function of underlying anisotropies.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Liquid Crystals and Photonics Group, Department of Electronics and Information Systems, Ghent University, 9052 Ghent, Belgium.
Blue phase liquid crystals (BPLCs) are chiral self-assembled three-dimensional (3D) periodic structures which have attracted a lot of attention due to their electro-optical properties, relevant for tunable soft photonic crystals and fast-response displays. However, to realize this application potential, controlling the BPLC alignment at the surfaces is crucial, and one way to obtain the desired alignment is by photoalignment patterning. In this article, monodomain BPLC samples with controlled orientation are achieved by imposing different alignment patterns that have a periodicity that is compatible with the size of the BPLC unit cell, using two-step photoalignment with polarized ultraviolet (UV) light.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
Department of Engineering, University of Ferrara, 44122 Ferrara, Italy.
The Kerr nonlinearity allows for exact analytic soliton solutions in 1+1D. While nothing excludes that these solitons form in naturally occurring real-world 3D settings as solitary walls or stripes, their observation had previously been considered unfeasible because of the strong transverse instability intrinsic to the extended nonlinear perturbation. We report the observation of solitons that are fully compatible with the 1+1D Kerr paradigm limit hosted in a 2+1D system.
View Article and Find Full Text PDFJ Am Chem Soc
November 2024
Department of Electrical & Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States.
Two-dimensional and layered van der Waals materials promise to overcome the limitations of conventional ferroelectrics in terms of miniaturization and material integration, but synthesis has produced only small (up to few micrometer-sized) ferroic crystals. Here, we report the realization of in-plane ferroelectric few-layer crystals of the monochalcogenides tin(II) sulfide and selenide (SnS, SnSe) whose linear dimensions exceed the current state of the art by up to 1 order of magnitude. Such large crystals allow the investigation of ferroic domain patterns that are unaffected by edges and finite-size effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!