Using lattice simulations we demonstrate from first principles the existence of a nonperturbative mechanism for elementary particle mass generation in models with gauge fields, fermions, and scalars, if an exact invariance forbids power divergent fermion masses and fermionic chiral symmetries broken at UV scale are maximally restored. We show that in the Nambu-Goldstone phase a fermion mass term, unrelated to the Yukawa operator, is dynamically generated. In models with electroweak interactions weak boson masses are also generated, opening new scenarios for beyond the standard model physics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.123.061802 | DOI Listing |
Nature
January 2025
Department of Physics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China.
The concept of non-Hermiticity has expanded the understanding of band topology, leading to the emergence of counter-intuitive phenomena. An example is the non-Hermitian skin effect (NHSE), which involves the concentration of eigenstates at the boundary. However, despite the potential insights that can be gained from high-dimensional non-Hermitian quantum systems in areas such as curved space, high-order topological phases and black holes, the realization of this effect in high dimensions remains unexplored.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
School of Physics, Beihang University, Haidian District, Beijing 100191, China.
Massive Dirac fermions, which are essential for realizing novel topological phenomena, are expected to be generated from massless Dirac fermions by breaking the related symmetry, such as time-reversal symmetry in topological insulators or crystal symmetry in topological crystalline insulators. Here, we report scanning tunneling microscopy and angle-resolved photoemission spectroscopy studies of α-Bi_{4}I_{4}, which reveals the realization of massive Dirac fermions in the (100) surface states without breaking the time-reversal symmetry. Combined with first-principles calculations, our experimental results indicate that the spontaneous symmetry breaking engenders two nondegenerate edge states at the opposite sides of monolayer Bi_{4}I_{4} after the structural phase transition, imparting mass to the Dirac fermions after taking the interlayer coupling into account.
View Article and Find Full Text PDFJ Phys Condens Matter
December 2024
Department of Physics, University of Allahabad, Prayagraj 211002, India.
The irradiation of topological insulator surface with elliptically polarized light modifies the topological properties in a phase-dependent manner impacting the Floquet Chern number which is a crucial topological invariant associated with such driven systems. Employing Floquet theory in presence of hexagonal warping term in the Dirac fermion Hamiltonian under off-resonant conditions, we derive an effective Hamiltonian that highlights distinct features in the Floquet-Dirac surface states. Specifically, we identify a helicity and ellipticity-dependent mass term in the quasi-static Hamiltonian, breaking time reversal symmetry.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2024
Department of Physics and Fribourg Center for Nanomaterials, University of Fribourg, Fribourg CH-1700, Switzerland.
The heavy fermion (HF) state of [Formula: see text]-electron systems is of great current interest since it exhibits various exotic phases and phenomena that are reminiscent of the Kondo effect in [Formula: see text]-electron HF systems. Here, we present a combined infrared spectroscopy and first-principles band structure calculation study of the [Formula: see text]-electron HF compound YFe[Formula: see text]Ge[Formula: see text]. The infrared response exhibits several charge-dynamical hallmarks of HF and a corresponding scaling behavior that resemble those of the [Formula: see text]-electron HF systems.
View Article and Find Full Text PDFSensors (Basel)
August 2024
Stefan Batory Academy of Applied Sciences, Stefana Batorego 64C, 96-100 Skierniewice, Poland.
SQM-ISS is a detector that will search from the International Space Station for massive particles possibly present among the cosmic rays. Among them, we mention strange quark matter, Q-Balls, lumps of fermionic exotic compact stars, Primordial Black Holes, mirror matter, Fermi balls, etc. These compact, dense objects would be much heavier than normal nuclei, have velocities of galaxy-bound systems, and would be deeply penetrating.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!