Native ambient mass spectrometry has the potential for simultaneous analysis of native protein structure and spatial distribution within thin tissue sections. Notwithstanding sensitivity, this information can, in principle, be obtained for any protein present with no requirement for a priori knowledge of protein identity. To date, native ambient mass spectrometry has primarily made use of the liquid extraction surface analysis (LESA) sampling technique. Here, we address a fundamental question: Are the protein structures observed following native liquid extraction surface analysis representative of the protein structures within the substrate, or does the extraction process facilitate refolding (or unfolding)? Specifically, our aim was to determine whether protein-ligand complexes observed following LESA are indicative of complexes present in the substrate, or an artifact of the sampling process. The systems investigated were myoglobin and its noncovalently bound heme cofactor, and the Zn-binding protein carbonic anhydrase and its binding with ethoxzolamide. Charge state distributions, drift time profiles, and collision cross sections were determined by liquid extraction surface analysis ion mobility mass spectrometry of native and denatured proteins and compared with those obtained by direct infusion electrospray. The results show that it was not possible to refold denatured proteins with concomitant ligand binding (neither heme, zinc, nor ethoxzolamide) simply by use of native-like LESA solvents. That is, protein-ligand complexes were only observed by LESA MS when present in the substrate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7006963PMC
http://dx.doi.org/10.1021/acs.analchem.9b02075DOI Listing

Publication Analysis

Top Keywords

liquid extraction
16
extraction surface
16
surface analysis
16
mass spectrometry
16
native liquid
8
native ambient
8
ambient mass
8
protein structures
8
protein-ligand complexes
8
complexes observed
8

Similar Publications

In recent years, metabolite identification of chemical constituents of traditional Chinese medicine (TCM) has been extensively studied. However, due to the intricacy of metabolic processes and the low concentration of metabolites, identifying metabolites of TCM in vivo is still a tough work. Meanwhile, credibility of metabolite identification through mass spectrum technology has been called into question by reason of the lack of metabolite standards.

View Article and Find Full Text PDF

Direct thrombin inhibitors (designated as EuRL-DTIs) were partially purified from ethanol extracts of Euphorbia resinifera O.Berg latex. The obtained EuRL-DTIs comprised four major compounds: two isomers of phenolic compounds (CHO) and two amide compounds (tentatively identified as CHNO and CHNO), as identified by liquid chromatography and electrospray ionisation quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS/MS), attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy, and/or nuclear magnetic resonance (NMR) spectroscopy.

View Article and Find Full Text PDF

Hyperspectral Imaging for High Throughput Optical Spectroscopy of pL Droplets.

Anal Chem

January 2025

Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland.

Droplet-based microfluidics is a powerful tool for high-throughput analysis of liquid samples with significant applications in biomedicine and biochemistry. Nevertheless, extracting content-rich information from single picolitre-sized droplets at high throughputs remains challenging due to the weak signals associated with these small volumes. Overcoming this limitation would be transformative for fields that rely on high-throughput screening, enabling broader multiparametric analysis.

View Article and Find Full Text PDF

The exploration of quantum phases in moiré systems has drawn intense experimental and theoretical efforts. The realization of honeycomb symmetry has been a recent focus. The combination of strong interaction and honeycomb symmetry can lead to exotic electronic states such as fractional Chern insulator, unconventional superconductor, and quantum spin liquid.

View Article and Find Full Text PDF

Phthalates, known as phthalate esters (PAEs), are among the most ubiquitous pervasive env7ironmental endocrine disruptors (EEDs), extensively utilized globally in various facets of modern life due to their irreplaceable role as plasticizers. The exponential production and utilization of plastic goods have substantially escalated plastic waste accumulation. Consequently, PAEs have infiltrated the environment, contaminating food and drinking water reservoirs, posing notable threats to human health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!