Polyurethane aerogels were prepared from a rigid aromatic triisocyanate (tris(4-isocyanatophenyl)methane) and cage-shaped α- and β-cyclodextrins as rigid polyols. Gelation was carried out in DMF using dibutyltin dilaurate as catalyst. Wet-gels were dried to aerogels (abbreviated as α- or β-CDPU-) with supercritical fluid CO. "" stands for the percent weight of the two monomers in the sol and was varied at two levels for each cyclodextrin: 2.5% and 15%. All aerogels were characterized with solid-state C and N NMR, CHN analysis, FTIR, XPS, SEM, and gas (N and CO) sorption porosimetry. α- and β-CDPU- aerogels were investigated as desiccants at room temperature. All materials had relatively higher capacities for water adsorption from high-humidity environments (99%) than typical commercial desiccants like silica or Drierite. However, α-CDPU-2.5 aerogels did stand out with a water uptake capacity reaching 1 g of HO per gram of material. Most importantly though, adsorbed water could be released quantitatively without heating, by just reducing the relative humidity of the environment to 10%. All α- and β-CDPU- aerogel samples were cycled between humid and dry environments 10 times. Their unusual behavior was traced to filling smaller mesopores with water and was attributed to a delicate balance of enthalpic (H-bonding) and entropic factors, whereas the latter are a function of pore sizes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b10755DOI Listing

Publication Analysis

Top Keywords

α- β-cdpu-
12
polyurethane aerogels
8
room temperature
8
reducing relative
8
relative humidity
8
humidity environment
8
aerogels
5
aerogels based
4
based cyclodextrins
4
cyclodextrins high-capacity
4

Similar Publications

Foliar-applied Zn on Catharanthus roseus enhanced production of vindoline, the main impediment precursor for costly anticancer bisindoles. A leaf-abundant CrZIP was characterized for likely role in modulating vindoline metabolism. The leaf-localized Catharanthus roseus alkaloid, vindoline, is the major impediment precursor in the production of scanty and expensive anticancer bisindoles, vinblastine and vincristine.

View Article and Find Full Text PDF

Compound-specific stable carbon isotope analysis of amino acids (CSIA-AA) is widely used in ecological studies to analyze food-webs and is gaining use in archaeology for investigating past diets. However, its use in reconstructing breastfeeding and weaning practices is not fully understood. This study evaluates the efficacy of stable carbon isotope analysis of amino acids in early life diet reconstruction by analyzing keratin from fingernail samples of three mother-infant pairs during late gestation and early postpartum periods.

View Article and Find Full Text PDF

Accuracy of two-compartment modelling of gas exchange with ventilation-perfusion mismatch in inhalational anesthesia.

Anesthesiology

January 2025

Department of Critical Care, Melbourne Medicine School, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria, Australia.

Background: Multi-compartment computer models of heterogeneity in alveolar ventilation-perfusion ratios (VA/Q scatter) across the lung explain the significant alveolar-arterial (A-a) partial pressure gradients and associated alveolar dead-space fractions (VDA/VA) seen in anesthetized patients for both carbon dioxide and for anesthetic gases of different blood solubilities. However, the accuracy of a simpler two-compartment model of VA/Q scatter to do this has not been tested or compared to calculations from the traditional Riley model with "ideal", unventilated (shunt) and unperfused (deadspace) compartments.

Methods: Measurements of gas partial pressures in inspired and expired gas and arterial and mixed venous blood from 29 patients undergoing inhalational general anesthesia for cardiac surgery was used to compare the accuracy of two simple models of VA/Q scatter and lung gas exchange in predicting measured alveolar and arterial partial pressure differences, and associated alveolar dead-space calculations for the modern anesthetic gases isoflurane, sevoflurane and desflurane.

View Article and Find Full Text PDF

Cryo-EM structure of AAV2 Rep68 bound to integration site AAVS1: insights into the mechanism of DNA melting.

Nucleic Acids Res

January 2025

Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, United States.

The Rep68 protein from Adeno-Associated Virus (AAV) is a multifunctional SF3 helicase that performs most of the DNA transactions necessary for the viral life cycle. During AAV DNA replication, Rep68 assembles at the origin of replication, catalyzing the DNA melting and nicking reactions during the hairpin rolling replication process to complete the second-strand synthesis of the AAV genome. We report the cryo-electron microscopy structures of Rep68 bound to the adeno-associated virus integration site 1 in different nucleotide-bound states.

View Article and Find Full Text PDF

Background: The lifestyle intervention ProMuscle, which combines resistance exercise and an increased protein intake, was effective in improving muscle strength, muscle mass, and physical functioning in older adults. However, due to a growing shortage of health care professionals, the rapidly growing aging population cannot be personally guided in the future. Therefore, Uni2Move, a scalable web-based variant of ProMuscle, was designed to reach larger groups of older adults without putting additional burden on health care professionals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!