Carbon nanotube (CNT) buckypapers, or films, have the potential for wide applications because of their unique properties. Neat buckypapers or pristine CNT (PCNT) films have relatively large elongation but low strength and low modulus due to the weak interaction between CNTs. Chemical modifications of PCNT films can significantly strengthen the interaction between CNTs, resulting in high strength and high modulus but usually accompanied by low elongation. Here, we report the functionalization of pristine CNT films by thiol-ended hyperbranched polymers (THBP-n) via a thiol-ene click reaction that can introduce simultaneous improvements on the strength, modulus, and elongation to the PCNT film by 689, 812, and 32.4%, respectively. The high thiol content of THBP-n enables the formation of a network with a high degree of cross-linking between carbon nanotubes, which provides high-efficiency load transfer that increases the tensile strength and modulus of the resulting films and at the same time a compressible hyperbranched structure that allows for deformation and slip between CNTs and consequently improved elongation. The main factors affecting the mechanical performance of the functionalized CNT film are also investigated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b12368 | DOI Listing |
Foods
January 2025
Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2 nocho, Nishi-ku, Niigata 950-2181, Japan.
High-pressure treatment was utilized in this study to produce high-quality, reduced-sodium pork gels with desirable texture and sensory properties, addressing the challenge of maintaining quality in low-sodium meat products to meet health-conscious consumer demands. High-pressure treatment applied within the range of 150-200 MPa significantly reduced cooking loss while maintaining moisture content and provided an ideal network structure for reduced-sodium pork gels. High-pressure treatment at up to 100-200 MPa, in combination with added sodium chloride and sodium polyphosphate, was evaluated for its effects on gel texture, with results indicating that high-pressure treatment significantly improved breaking stress (increased by 10.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Integrated Design and Tribology Systems, Faculty of Mechanics and Technology, Rzeszów University of Technology, ul. Kwiatkowskiego 4, 37-450 Stalowa Wola, Poland.
In addition to the traditional uses of plywood, such as furniture and construction, it is also widely used in areas that benefit from its special combination of strength and lightness, particularly as a construction material for the production of finishing elements of campervans and yachts. In light of the current need to reduce emissions of climate-damaging gases such as CO, the use of lightweight construction materials is very important. In recent years, hybrid structures made of carbon fibre-reinforced plastics (CFRPs) and metals have attracted much attention in many industries.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Civil and Transportation Engineering, Hebei University of Technology, Xiping Road 5340, Tianjin 300401, China.
Waste slurry, a major by-product of urban construction, is produced in rapidly increasing volumes each year. Dehydrated waste slurry has potential as a roadbed material; however, its performance in freeze-thaw environments, which can induce frost heave and thaw settlement, and the mechanism of the influence of freeze-thaw cycles on its macro and micro properties are still unclear and need thorough investigation. This study explores the macroscopic and microscopic properties of waste slurry subjected to freeze-thaw cycles.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Industrial Engineering, University of Trento, 38123 Trento, Italy.
The metastable β-Ti21S alloy exhibits a lower elastic modulus than Ti-6Al-4V ELI while maintaining high mechanical strength and ductility. To address stress shielding, this study explores the integration of lattice structures within prosthetics, which is made possible through additive manufacturing. Continuous adhesion between the implant and bone is essential; therefore, auxetic bow-tie structures with a negative Poisson's ratio are proposed for regions under tensile stress, while Triply Periodic Minimal Surface (TPMS) structures with a positive Poisson's ratio are recommended for areas under compressive stress.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Tickle College of Engineering, University of Tennessee, Knoxville, TN 37996, USA.
Pultruded carbon fiber-reinforced composites are attractive to the wind energy industry due to the rapid production of highly aligned unidirectional composites with enhanced fiber volume fractions and increased specific strength and stiffness. However, high volume carbon fiber manufacturing remains cost-prohibitive. This study investigates the feasibility of a pultruded low-cost textile carbon fiber-reinforced epoxy composite as a promising material in spar cap production was undertaken based on mechanical response to four-point flexure loading.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!