AI Article Synopsis

  • SPME-TD-ESI-MS/MS is introduced as a fast method to quantify acetaminophen in plasma samples from pharmacokinetics studies.
  • Acetaminophen is concentrated on coated fibers using direct immersion, and then detected in under 30 seconds after thermal desorption.
  • The method shows reliable results with a calibration range of 100-10,000 ng/mL, achieving good accuracy comparable to conventional techniques, while allowing for efficient PK profiling with a 10-min extraction time.

Article Abstract

Rationale: Solid-phase microextraction coupled with thermal desorption electrospray ionization tandem mass spectrometry (SPME-TD-ESI-MS/MS) is proposed as a novel method for the rapid quantification of acetaminophen in plasma samples from a pharmacokinetics (PK) study.

Methods: Traces of acetaminophen were concentrated on commercial fused-silica fibers coated with a polar polyacrylate (PA) polymer using direct immersion SPME. No agitation, heating, addition of salt, or adjustment of the pH of the sample solution was applied during the extraction. Any acetaminophen absorbed on the SPME fibers was subsequently desorbed and detected by TD-ESI-MS/MS.

Results: Parameters of the absorption, sensitivity, reproducibility, and linearity for the SPME-TD-ESI-MS/MS method were evaluated. The time required to complete a TD-ESI-MS/MS analysis was less than 30 seconds. Matrix-matching calibration was performed to calculate the concentration of acetaminophen in the sample. A linear calibration curve with a concentration range of 100-10,000 ng/mL was constructed to calculate the quantity of acetaminophen. The SPME-TD-ESI-MS quantification results for acetaminophen in plasma were in good agreement with those obtained by the conventional LC/MS/MS method.

Conclusions: With the proposed method, a 10-min SPME time was enough to achieve the lower limit of quantitation (i.e. 100 ng/mL) and for a complete PK profiling of acetaminophen. A shorter extraction time could be achieved by applying agitation, heating, adding salt, or adjusting the pH of the sample solution to enhance analyte absorption efficiency. The time required to detect acetaminophen on the SPME fiber was less than 30 s, allowing the rapid quantification of acetaminophen in plasma with good accuracy.

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.8564DOI Listing

Publication Analysis

Top Keywords

quantification acetaminophen
16
acetaminophen plasma
16
rapid quantification
12
acetaminophen
10
solid-phase microextraction
8
microextraction coupled
8
coupled thermal
8
thermal desorption
8
desorption electrospray
8
electrospray ionization
8

Similar Publications

Monitoring paracetamol levels in environmental samples is essential, as this widely used pharmaceutical can degrade water quality and adversely affect both ecosystems and human health. To address this issue, a novel, simple, sensitive, and accurate method has been developed. This method employs a functionalized ionic liquid, 2-(4-hydroxybenzyl)hydrazinium chloride ([HBH][Cl]), specifically designed to structurally mimic paracetamol and function as a complexing agent.

View Article and Find Full Text PDF

Babassu (Atallea sp.), a native palm tree from South America's Amazon produces bio-oil and biochar with significant potential for industrial applications. Babassu oil as a bio-based plasticizer is reported here for the first time to replace petrochemical alternatives in the production of conductive filaments for additive manufacturing purposes.

View Article and Find Full Text PDF

Seasonal monitoring, ecological risk assessment, and prioritization of pharmaceuticals in a tropical semi-enclosed bay (Santos, São Paulo coast, Brazil).

Mar Environ Res

December 2024

Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal; Escola das Ciências da Vida e do Ambiente (ECVA), Universidade de Trás-os-Montes e Alto Douro (UTAD), 5000-801, Vila Real, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.

Research on the occurrence and seasonal monitoring of pharmaceutically active compounds (PhACs) in estuarine and coastal waters has intensified recently. However, few studies have been conducted with PhACs flowing into the marine waters of South America (such as Brazil). Against this backdrop, the aims of this study were: (i) evaluate, for the first time, the seasonal occurrence throughout a year and the potential ecological risks of ten selected PhACs in marine bathing waters from Santos Bay, São Paulo, Brazil (a tropical low-wave energy semi-closed bay); and (ii) develop a list of high-priority PhACs for the monitoring based on "occurrence, persistence, bioaccumulation, and toxicity" criteria (OPBT).

View Article and Find Full Text PDF
Article Synopsis
  • Hyaluronan (HA) is an important molecule involved in various biological processes and has implications in health and disease, such as tissue hydration and tumor growth.
  • Traditional methods for measuring HA often lack sensitivity and specificity, particularly for lower molecular weights, which limits their effectiveness.
  • This study presents a new method using LC-MS/MS, capable of detecting HA at very low levels and successfully applied it to analyze HA levels in mouse tissues, showing significant changes in response to liver injury.
View Article and Find Full Text PDF

Temporal trends and sources of organic micropollutants in wastewater.

Sci Total Environ

December 2024

Analytical Chemistry Group, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.

Effluent wastewater from conventional wastewater treatment plants (WWTPs) is a source of environmental micropollutants. This study investigated temporal trends of organic micropollutants in effluent wastewater, aiming to identify underlying drivers and their implications for treatment efficiency. From September to December 2022, we collected 168 effluent and 10 influent samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!