Crack growth-driven wettability transition on carbon black/polybutadiene nanocomposite coatings via stretching.

Soft Matter

Chengdu Green Energy and Green Manufacturing Technology R&D Center, Chengdu Development Center of Science and Technology, China Academy of Engineering Physics, Chengdu, 610200, China.

Published: October 2019

Ordered topography patterns with a mechanical response are usually designed to achieve wettability switching by geometric parameter changes through mechanical stimuli. However, their fabrication often needs expensive and complicated micro/nano-fabrication processing (e.g. photolithography and ion etching). In this study, a nano-carbon black (CB)/polybutadiene (PB) coating with a Wenzel superhydrophobic state was prepared on a rubber substrate by a facile method combining solution mixing and spraying coating. By stretching the composite coating, the generated cracks divided the continuous coating into new micro-nano mastoids, resulting in the formation of new hierarchical roughness for Cassie superhydrophobicity. The Wenzel-to-Cassie transition behavior was dependent on the CB loading in the coating. During stretching, the cracks propagated more rapidly in the coating with higher CB loading and induced the desired hierarchical structure to consequently enable the Wenzel-to-Cassie transition earlier at a lower stretching strain. The stretched coating presented good anti-wetting (a sliding angle of 5°) and low water adhesion. After releasing, the coating returned to its original Wenzel state by structure recovery. Thus, the switchable wettability of the coating can be adopted for no-loss water droplet transfer by controlling the droplet adhesion through cyclic stretching-releasing, and exhibits good potential for microfluidic and biomedical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9sm01234fDOI Listing

Publication Analysis

Top Keywords

coating
9
coating stretching
8
wenzel-to-cassie transition
8
crack growth-driven
4
growth-driven wettability
4
wettability transition
4
transition carbon
4
carbon black/polybutadiene
4
black/polybutadiene nanocomposite
4
nanocomposite coatings
4

Similar Publications

Flexible Tactile Sensors with Self-Assembled Cilia Based on Magnetoelectric Composites.

ACS Appl Mater Interfaces

January 2025

School of Precision Instrument and Optoelectronics Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China.

Traditional tactile sensors are single-function, and it is difficult to meet the needs of applications in complex environments. This paper describes the development and applications of flexible tactile sensors with cilia based on magnetoelectric composites made of neodymium iron boron (NdFeB) microparticles with a silver (Ag) nanoshell in polydimethylsiloxane (PDMS). These sensors adopt the inherent magnetism of NdFeB microparticles and the excellent conductivity of the Ag coating.

View Article and Find Full Text PDF

Purpose: Angioplasty of lower extremity arteries with calcification may result in flow-limiting dissection requiring bail-out stenting with unfavorable long-term outcomes. Vessel preparation prior to angioplasty may improve immediate results of the angioplasty and long-term patency. This prospective study assessed the 12-month outcomes of patients who underwent novel vessel preparation catheter, the FLEX Vessel Prep™ System (FLEX VP), prior to drug-coated balloon angioplasty (DCB-PTA).

View Article and Find Full Text PDF

Microprofiling real time nitric oxide flux for field studies using a stratified nanohybrid carbon-metal electrode.

Anal Methods

November 2017

Agricultural and Biological Engineering Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA.

Nitric oxide (NO) is an important signaling molecule that is involved in stress response, homeostasis, host defense, and cell development. In most cells, NO levels are in the femtomolar to micromolar range, with extracellular concentrations being much lower. Thus, real time measurement of spatiotemporal NO dynamics near the surface of living cells/tissues is a major challenge.

View Article and Find Full Text PDF

Highly sensitive surface-enhanced Raman scattering detection of adenosine triphosphate based on core-satellite assemblies.

Anal Methods

November 2017

Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.

As an important small molecule, adenosine triphosphate (ATP) plays an important role in the regulation of cell metabolism and supplies energy for various biochemical reactions in organisms. We herein developed a sensitive surface-enhanced Raman scattering (SERS) biosensor for highly specific detection of ATP using core-satellite assemblies. To construct the aptamer-based biosensor, a known ATP binding aptamer was divided into two segments.

View Article and Find Full Text PDF

A SPR aptamer sensor for mercury based on AuNPs@NaYF:Yb,Tm,Gd upconversion luminescent nanoparticles.

Anal Methods

November 2017

Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China.

A new aptamer-based surface plasmon resonance (SPR) system has been designed to detect Hg that utilizes near-infrared (NIR)-to-NIR gold nanoparticle coated NaYF:Yb,Tm,Gd up-conversion nanoparticles (AuNPs@NaYF:Yb,Tm,Gd UCNPs) as probes. The AuNPs@NaYF:Yb,Tm,Gd UCNPs were prepared and excited by near-infrared light (980 nm) which emitted at a near-infrared wavelength (808 nm) using an inexpensive infrared continuous wave laser diode. The AuNPs@NaYF:Yb,Tm,Gd UCNPs were conjugated with Hg aptamers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!