Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
High levels of PGE2 have been implicated in the pathogenesis of intestinal inflammatory disorders such as necrotizing enterocolitis (NEC) and peritonitis. However, PGE2 has a paradoxical effect: its low levels promote intestinal homeostasis, whereas high levels may contribute to pathology. These concentration-dependent effects are mediated by four receptors, EP1-EP4. In this study, we evaluate the effect of blockade of the low affinity pro-inflammatory receptors EP1 and EP2 on expression of COX-2, the rate-limiting enzyme in PGE2 biosynthesis, and on gut barrier permeability using cultured enterocytes and three different models of intestinal injury. PGE2 upregulated COX-2 in IEC-6 enterocytes, and this response was blocked by the EP2 antagonist PF-04418948, but not by the EP1 antagonist ONO-8711 or EP4 antagonist E7046. In the neonatal rat model of NEC, EP2 antagonist and low dose of COX-2 inhibitor Celecoxib, but not EP1 antagonist, reduced NEC pathology as well as COX-2 mRNA and protein expression. In the adult mouse endotoxemia and cecal ligation/puncture models, EP2, but not EP1 genetic deficiency decreased COX-2 expression in the intestine. Our results indicate that the EP2 receptor plays a critical role in the positive feedback regulation of intestinal COX-2 by its end-product PGE2 during inflammation and may be a novel therapeutic target in the treatment of NEC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7051888 | PMC |
http://dx.doi.org/10.1097/SHK.0000000000001444 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!