Background: Transcranial magnetic stimulation (TMS) and recording of magnetic motor evoked potentials (MMEP) can detect neurological dysfunction in horses but cutoff values based on confirmed spinal cord dysfunction are lacking.

Objectives: To determine latency time cutoff for neurological dysfunction.

Animals: Five control horses and 17 horses with proprioceptive ataxia.

Methods: Case-control study with receiver operating characteristic curve analysis, based on diagnostic imaging, TMS, and histopathological findings. Horses were included if all 3 examinations were performed.

Results: Diagnostic imaging and histopathology did not show abnormalities in the control group but confirmed spinal cord compression in 14 of 17 ataxic horses. In the remaining 3 horses, histopathological lesions were mild to severe, but diagnostic imaging did not confirm spinal cord compression. In control horses, latency time values of thoracic and pelvic limbs were significantly lower than in ataxic horses (20 ± 1 vs 34 ± 16 milliseconds, P = .05; and 39 ± 1 vs 78 ± 26 milliseconds, P = .004). Optimal cutoff values to detect spinal cord dysfunction were 22 milliseconds (sensitivity [95% CI interval], 88% [73%-100%]; specificity, 100% [100%-100%]) in thoracic and 40 milliseconds (sensitivity, 94% [83%-100%]; specificity, 100% [100%-100%]) in pelvic limbs. To detect spinal cord dysfunction caused by compression, the optimal cutoff for thoracic limbs remained 22 milliseconds, while it increased to 43 milliseconds in pelvic limbs (sensitivity, 100% [100%-100%]; specificity, 100% [100%-100%] for thoracic and pelvic limbs).

Conclusions And Clinical Importance: Magnetic motor evoked potential analysis using these cutoff values is a promising diagnostic tool for spinal cord dysfunction diagnosis in horses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6766509PMC
http://dx.doi.org/10.1111/jvim.15576DOI Listing

Publication Analysis

Top Keywords

spinal cord
28
cord dysfunction
20
cutoff values
16
100% [100%-100%]
16
magnetic motor
12
motor evoked
12
latency time
12
diagnostic imaging
12
pelvic limbs
12
specificity 100%
12

Similar Publications

In clinics, physical injuries to the spinal cord cause a temporary motor areflexia below lesion, known as spinal shock. This topic is still underexplored due to the lack of preclinical spinal cord injury (SCI) models that do not use anesthesia, which would affect spinal excitability. Our innovative design considered a custom-made micro impactor that provides localized and calibrated strikes to the ventral surface of the thoracic spinal cord of the entire CNS isolated from neonatal rats.

View Article and Find Full Text PDF

This study presents two cases of central sleep apnea syndrome in children, highlighting the utility of assessing ventilatory control stability, particularly loop gain and central chemosensitivity in treatment decision-making. In the first case, elevated loop gain for oxygen correlated with periodic breathing, leading to successful treatment with supplemental oxygen in a 13 year-old boy with Prader-Willi-like syndrome. Conversely, in the second case, dealing with a 10 year-old girl with tumor in the brainstem-spinal cord junction, reduced loop gain prompted treatment with nocturnal non-invasive ventilation.

View Article and Find Full Text PDF

Intercostal neuralgia can be debilitating and extremely difficult to treat despite multi-modal therapies. The literature describing the role of neuromodulation in patients with intercostal neuralgia is scarce. In this medically challenging case report, we describe a 56-year-old male with a near complete resolution of intractable chronic intercostal neuralgia, secondary to traumatic rib fractures and multiple surgical interventions, with a single lead thoracic spinal cord stimulator (SCS) implant.

View Article and Find Full Text PDF

Early embryos display a remarkable ability to regulate tissue patterning in response to changes in tissue size. However, it is not clear whether this ability continues into post-gastrulation stages. Here, we performed targeted removal of dorsal progenitors in the zebrafish tailbud using multiphoton ablation.

View Article and Find Full Text PDF

Background: Cervical spine pyogenic infection (CSPI) is a rare and challenging form of spinal infection that is typically caused by pyogenic bacteria and primarily affects the cervical vertebral bodies and surrounding tissues. Given its nonspecific symptoms, such as fever and neck pain, early diagnosis is crucial to prevent severe complications, including spinal cord injury. We report a previously unreported case of acute CSPI arising from chronic paronychia, exploring its diagnostic and therapeutic challenges through a review of the current literature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!