Previous analysis of next-generation sequencing (NGS) hereditary pan-cancer panel testing demonstrated that approximately 40% of TP53 pathogenic and likely pathogenic variants (PVs) detected have NGS allele frequencies between 10% and 30%, indicating that they likely are acquired somatically. These are seen more frequently in older adults, suggesting that most result from normal aging-related clonal hematopoiesis. For this analysis, apparent heterozygous germline TP53 PV carriers (NGS allele frequency 30-70%) were offered follow-up testing to confirm variant origin. Ninety-eight probands had samples submitted for follow-up family member testing, fibroblast testing, or both. The apparent heterozygous germline TP53 PV was not detected in 32.6% (15/46) of submitted fibroblast samples, indicating that it was acquired somatically, either through clonal hematopoiesis or via constitutional mosaicism. Notably, no individuals with confirmed germline or likely germline TP53 PVs met classic Li-Fraumeni syndrome (LFS) criteria, only 41% met Chompret LFS criteria, and 59% met neither criteria, based upon provider-reported personal and family cancer history. Comprehensive reporting of TP53 PVs detected using NGS, combined with follow-up analysis to confirm variant origin, is advised for clinical testing laboratories. These findings underscore the investment required to provide individuals and family members with clinically accurate genetic test results pertaining to their LFS risk.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6972517 | PMC |
http://dx.doi.org/10.1002/humu.23910 | DOI Listing |
J Biol Chem
January 2025
Department of Hepatopancreatobiliary Surgery, Suzhou Ninth Hospital Affiliated to Soochow University; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University; Jiangsu, China. Electronic address:
Inactivation of p53 by mutations commonly occurs in human cancer. The mutated p53 proteins may escape proteolytic degradation and exhibit high expression in tumors, and acquire gain-of-function activity that promotes tumor progression and chemo-resistance. Therefore, selectively targeting of the gain-of-function p53 mutants may serve as a promising therapeutic strategy for cancer prevention and treatment.
View Article and Find Full Text PDFJ Neurosci
January 2025
Wellcome Centre for Integrative Neuroimaging; Nuffield Department of Clinical Neuroscience, University of Oxford.
Damage to the primary visual cortex (V1) results in visual field deficits on the contralateral side of the world corresponding to the damaged region. Patients with such loss nonetheless show varying residual vision within this apparently blind region, with the neural mechanisms underlying this ability obscured by small study populations. We identified lesions on structural scans from 39 patients (12 female) with hemianopia and occipital lobe damage.
View Article and Find Full Text PDFChildren (Basel)
December 2024
Department of Life Sciences and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy.
Background/objectives: Hypothyroidism can profoundly affect growth, particularly if it insidiously arises during early childhood. Congenital hypothyroidism is now detected through newborn screening, significantly improving the overall growth outcomes of these children. Conversely, acquired hypothyroidism often results in delayed somatic growth and shorter stature, with many affected children initially remaining non-symptomatic.
View Article and Find Full Text PDFMol Biol Evol
January 2025
Professor Emeritus, School of Biological Sciences, Integrated Cancer Research Center, Georgia Institute of Technology, Atlanta, GA, USA.
The molecular basis of adaptive evolution and cancer progression are both complex processes that share many striking similarities. The potential adaptive significance of environmentally-induced epigenetic changes is currently an area of great interest in both evolutionary and cancer biology. In the field of cancer biology intense effort has been focused on the contribution of stress-induced non-coding RNAs (ncRNAs) in the activation of epigenetic changes associated with elevated mutation rates and the acquisition of environmentally adaptive traits.
View Article and Find Full Text PDFPLoS Biol
January 2025
Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
Sumoylation is a posttranslational modification essential for multiple cellular functions in eukaryotes. ULP-2 is a conserved SUMO protease required for embryonic development in Caenorhabditis elegans. Here, we revealed that ULP-2 controls germline development by regulating the PHD-SET domain protein, SET-26.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!