The rapid spread and settlement of Aedes albopictus mosquitoes across at least 28 countries in Europe, as well as several countries in Asia Minor, the Middle East and Africa, has made it one of the most invasive species of all time. Even though the biology of Ae. albopictus in its native tropical environment has been documented for a long time, the biology and ecology of this species in newly colonized temperate environments remain poorly known despite its important role as a vector for about twenty arboviruses. In this context, the main goals of this work were to investigate Ae. albopictus phenotypic variations at a local scale in Albania, the country where Ae. albopictus was first recorded in Europe, and to determine if its phenotypes could be affected by altitude. Analysis of Ae. albopictus wing phenotypes was performed using a geometric morphometric approach. We observed shape and size variations among altitudinal populations of Ae. albopictus. Differences of wing phenotypes were highlighted between altitude groups for male and female mosquitoes. The phenotypic variations observed in Ae. albopictus between altitudinal groups indicated these populations are exposed to environmental and ecological pressures. These results suggest the presence of phenotypic plasticity in this species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6729119PMC
http://dx.doi.org/10.1051/parasite/2019053DOI Listing

Publication Analysis

Top Keywords

albopictus
8
aedes albopictus
8
recorded europe
8
time biology
8
phenotypic variations
8
wing phenotypes
8
altitudinal variations
4
variations wing
4
wing morphology
4
morphology aedes
4

Similar Publications

With their diverse species, mosquitoes are known to transmit the causal agents of diseases such as malaria, dengue, and yellow fever. Their high adaptability, attraction to humans, and variable adult behaviors make them a significant health concern. The focus on Aedes aegypti is significant for reducing vector-human contacts, monitoring insecticide resistance, and developing innovative vector management strategies.

View Article and Find Full Text PDF

Machine learning and molecular docking prediction of potential inhibitors against dengue virus.

Front Chem

December 2024

African Society for Bioinformatics and Computational Biology, Cape Town, South Africa.

Introduction: Dengue Fever continues to pose a global threat due to the widespread distribution of its vector mosquitoes, and . While the WHO-approved vaccine, Dengvaxia, and antiviral treatments like Balapiravir and Celgosivir are available, challenges such as drug resistance, reduced efficacy, and high treatment costs persist. This study aims to identify novel potential inhibitors of the Dengue virus (DENV) using an integrative drug discovery approach encompassing machine learning and molecular docking techniques.

View Article and Find Full Text PDF

E2 Ubiquitin-Conjugating Enzymes Regulates Dengue Virus-2 Replication in .

Microorganisms

December 2024

Program in Public Health, School of Medicine, University of California, Irvine, CA 92617, USA.

, a major vector of dengue virus (DENV), has a global distribution. Identifying the key components of the ubiquitin system of essential for the replication of viruses could help identify targets for developing broad-spectrum antiviral strategies. This study explores the interaction between E2 ubiquitin-conjugating enzymes (Ubc9) and DENV-2 proteins (NS1, NS5, and E) using cell culture and mosquito models.

View Article and Find Full Text PDF

The West Nile virus (WNV) has recently become more widespread, posing a threat to both human and animal health. In Western Europe, most outbreaks have been caused by WNV lineage 1, while in Eastern Europe, WNV lineage 2 has led to human and bird mortality. The ability to appropriately manage this threat is dependent on integrated surveillance and early detection.

View Article and Find Full Text PDF

The dengue virus (DENV) is a mosquito-borne flavivirus endemic to many tropical and subtropical regions. Over the past few decades, the global incidence of dengue has risen dramatically, with the virus now present in over 100 countries, putting nearly half of the world's population at risk. This increase is attributed to several factors, including urbanization, climate change, and global travel, which facilitate the spread of both the virus and its mosquito vectors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!