AI Article Synopsis

  • Asthma causes chronic breathing difficulties and significant public health issues, and methane-rich saline (MRS) has potential therapeutic effects.
  • A mouse model of asthma was used to study MRS, involving treatment groups to assess its impact on airway responsiveness and inflammation.
  • Results showed that MRS improved lung function, reduced inflammation, lowered pro-inflammatory cytokines, and decreased oxidative stress markers in asthmatic mice.

Article Abstract

Background: Asthma is a common cause of breathing difficulty in children and adults, and is characterized by chronic airway inflammation that is poorly controlled by available treatments. This results in severe disability and applies a huge burden to the public health system. Methane has been demonstrated to function as a therapeutic agent in many diseases. The aim of the present study was to explore the effect of methane-rich saline (MRS) on the pathophysiology of a mouse model of asthma and its underlying mechanism.

Methods: A murine model of ovalbumin (OVA)-induced allergic asthma was applied in this study. Mice were divided into three groups: a control group, an OVA group, and OVA-induced asthmatic mice treated with MRS as the third group. Lung resistance index (RI) and dynamic compliance (Cdyn) were measured to determine airway hyper-responsiveness (AHR). Haematoxylin and eosin (H&E) staining was performed and scored to show histopathological changes. Cell counts of bronchoalveolar lavage fluid (BALF) were recorded. Cytokines interleukin (IL)-4, IL-5, IL-13, tumor necrosis factor α (TNF-α), and C-X-C motif chemokine ligand 15 (CXCL15) from BALF and serum were measured by enzyme-linked immunosorbent assay (ELISA). The oxidative stress indexes, including malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), myeloperoxidase (MPO), and 8-hydroxydeoxyguanosine (8-OHdG), were determined using commercial kits. Apoptosis was evaluated by western blot, quantitative real-time polymerase chain reaction (qRT-PCR), and biochemical examination.

Results: MRS administration reversed the OVA-induced AHR, attenuated the pathological inflammatory infiltration, and decreased the cytokines IL-4, IL-5, IL-13, TNF-α, and CXCL15 in serum and BALF. Moreover, following MRS administration, the oxidative stress was alleviated as indicated by decreased MDA, MPO, and 8-OHdG, and elevated SOD and GSH. In addition, MRS exhibited an anti-apoptotic effect in this model, protecting epithelial cells from damage.

Conclusions: Methane improves pulmonary function and decreases infiltrative inflammatory cells in the allergic asthmatic mouse model. This may be associated with its anti-inflammatory, antioxidative, and anti-apoptotic properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6751488PMC
http://dx.doi.org/10.1631/jzus.B1900195DOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
methane-rich saline
8
allergic asthma
8
mouse model
8
il-4 il-5
8
il-5 il-13
8
protective effects
4
effects methane-rich
4
saline mice
4
mice allergic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!