Kaempferol reduces hepatic triglyceride accumulation by inhibiting Akt.

J Food Biochem

Department of Biotechnology, School of Life Sciences & Biotechnology for BK21 PLUS, Korea University, Seoul, Republic of Korea.

Published: November 2019

In this paper, we studied the mechanism of the triglyceride (TG)-lowering effect of kaempferol in vitro and in vivo. Kaempferol showed LXR agonistic activities without inducing TGs or the expression of several lipogenic genes in cultured cells. A luciferase and qPCR analysis showed that kaempferol increased the transactivation of PPARα and PPARδ and stimulated gene expression associated with fatty acid oxidation and uptake in hepatocytes. More importantly, kaempferol inhibited protein kinase B (Akt) activity and suppressed SREBP-1 activation via multiple mechanisms, including through increasing Insig-2a expression, reducing SREBP-1 phosphorylation, and increasing GSK-3 phosphorylation. Collectively, these actions inhibited the SREBP-1 activation process. Furthermore, as an Akt/mTOR pathway inhibitor, kaempferol led to the induction of hepatic autophagy and resulted in a decrease in lipid droplet formation in the mouse liver. These findings demonstrate that kaempferol exerts its TG-lowering effect via Akt inhibition and activation of PPARα and PPARδ. PRACTICAL APPLICATIONS: Kaempferol is a major dietary flavonoid in various plant-based foods, and it is used as a valuable ingredient in functional foods, with numerous beneficial properties such as anticancer, antioxidant, and anti-atherosclerotic activities. Kaempferol exerts its TG-lowering effect via Akt inhibition and activation of PPARα and PPARδ. Currently, the number of people with hyperlipidemia is rapidly growing in both developed and developing societies; thus, we propose that kaempferol could be used for therapeutic interventions aimed at the treatment of these individuals.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jfbc.13034DOI Listing

Publication Analysis

Top Keywords

pparα pparδ
12
kaempferol
10
srebp-1 activation
8
kaempferol exerts
8
exerts tg-lowering
8
tg-lowering akt
8
akt inhibition
8
inhibition activation
8
activation pparα
8
kaempferol reduces
4

Similar Publications

Background: Per- and polyfluoroalkyl Substances (PFAS) are synthetic chemicals widely detected in humans and the environment. Exposure to perfluorooctanesulfonic acid (PFOS) or perfluorohexanesulfonic acid (PFHxS) was previously shown to cause dark-phase hyperactivity in larval zebrafish.

Objectives: The objective of this study was to elucidate the mechanism by which PFOS or PFHxS exposure caused hyperactivity in larval zebrafish.

View Article and Find Full Text PDF

Oxidative Stress Causes Masculinization of Genetically Female Medaka Without Elevating Cortisol.

Front Endocrinol (Lausanne)

July 2022

Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan.

Medaka () is a teleost fish with an XX/XY sex determination system. Sex reversal from female-to-male (masculinization of XX fish) can be induced through cortisol elevation from exposure to environmental stress such as high temperature during sexual differentiation. However, the effects of oxidative stress, generated metabolic reactions and biological defense mechanisms, on the sexual differentiation of medaka are unclear.

View Article and Find Full Text PDF

MicroRNA-21 (miR-21) is one of the most frequently upregulated miRNAs in liver diseases such as nonalcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC). However, mechanistic pathways that connect NAFLD and HCC remain elusive. We developed a doxycycline (Dox)-inducible transgenic zebrafish model (LmiR21) which exhibited an upregulation of miR-21 in the liver, which in turn induced the full spectrum of NAFLD, including steatosis, inflammation, fibrosis, and HCC, in the LmiR21 fish.

View Article and Find Full Text PDF

The interaction of dietary eicosapentaenoic acid and docosahexaenoic acid (EPA+DHA) levels with omega-6 to omega-3 ratios (ω6:ω3), and their impact on head kidney lipid metabolism in farmed fish, are not fully elucidated. We investigated the influence of five plant-based diets (12-week exposure) with varying EPA+DHA levels (0.3, 1.

View Article and Find Full Text PDF
Article Synopsis
  • The pparab subtype in zebrafish is strongly expressed in high oxidative tissues and its deficiency reduces fatty acid β-oxidation in both liver and muscle, similar to the role of PPARα in mammals.
  • Knockout of pparab leads to increased glucose utilization and inhibited amino acid breakdown, showcasing a metabolic shift in energy sources.
  • This research offers new insights into PPARα's regulatory role in nutrient metabolism and establishes zebrafish as a valuable model for studying metabolic processes comparably to mammals.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!