Long noncoding RNAs (lncRNA) have emerged as vital molecules governing epithelial-to-mesenchymal transition (EMT) in cancers. Translation regulatory RNA 1 (TRERNA1) is one such lncRNA known to enhance the transcriptional activity of the EMT-transcription factor, Snail. We have previously demonstrated differential upregulation of EMT-transcription factors and cadherin switching across various clinico-pathologic-molecular subclasses of ependymomas (EPN). With an aim to analyze the correlation between the expression of TRERNA1 in EPNs, we performed gene expression analysis for TRERNA1 on 75 Grade II/III EPNs and correlated with tumor site, C11orf95-RELA fusions, age, MIB-1 proliferative indices, and outcome wherever available. Upregulation of gene expression levels of TRERNA1 was seen in intracranial EPNs, with highest expression levels in pediatric posterior fossa EPNs. High TRERNA1 expression was found associated with higher proliferative indices (p = 0.034) and shorter progression free survival (p = 0.002). Our study, for the first time, demonstrates an association between TRERNA1 expressions and pediatric posterior fossa EPNs. Further in-vivo and in-vitro studies are required to confirm these findings and evaluate TRERNA1 as a novel biomarker and potential therapeutic target in childhood PF-EPNs.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12253-019-00736-8DOI Listing

Publication Analysis

Top Keywords

translation regulatory
8
trerna1
8
rna trerna1
8
gene expression
8
proliferative indices
8
expression levels
8
pediatric posterior
8
posterior fossa
8
fossa epns
8
expression
6

Similar Publications

Alzheimer's disease (AD), a diverse neurodegenerative disease, is the leading cause of dementia, accounting for 60-80 % of all cases. The pathophysiology of Alzheimer's disease is unknown, and there is no cure at this time. Recent developments in transcriptome-wide profiling have led to the identification of a number of non-coding RNAs (ncRNAs).

View Article and Find Full Text PDF

CsCIPK20 Improves Tea Plant Cold Tolerance by Modulating Ascorbic Acid Synthesis Through Attenuation of CsCSN5-CsVTC1 Interaction.

Plant Cell Environ

December 2024

Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China.

Low temperature is a limiting environmental factor for tea plant growth and development. CBL-interacting protein kinases (CIPKs) are important components of the calcium pathway and involved in plant development and stress responses. Herein, we report the function and regulatory mechanisms of a low-temperature-inducible gene, CsCIPK20, in tea plants.

View Article and Find Full Text PDF

Canine models of inherited retinal diseases: from neglect to well-recognized translational value.

Mamm Genome

December 2024

Division of Experimental Retinal Therapies, Department of Clinical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Large animal models of inherited retinal diseases, particularly dogs, have been extensively used over the past decades to study disease natural history and evaluate therapeutic interventions. Our group of investigators at the University of Pennsylvania, School of Veterinary Medicine, has played a pivotal role in characterizing several of these animal models, documenting the natural history of their diseases, developing gene therapies, and conducting proof-of-concept studies. Additionally, we have assessed the potential toxicity of these therapies for human clinical trials, contributing to the regulatory approval of voretigene neparvovec-rzyl (Luxturna) by the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA) for the treatment of patients with confirmed biallelic mutation-associated retinal dystrophy.

View Article and Find Full Text PDF

Assembly of Structurally Simple Icosahedral Viruses.

Subcell Biochem

December 2024

Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) and Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain.

Icosahedral viruses exhibit elegant pathways of capsid assembly and maturation regulated by symmetry principles. Assembly is a dynamic process driven by consecutive and genetically programmed morphogenetic interactions between protein subunits. The non-symmetric capsid subunits are gathered by non-covalent contacts and interactions in assembly intermediates, which serve as blocks to build a symmetric capsid.

View Article and Find Full Text PDF

Bioinformatics Identification of angiogenesis-related biomarkers and therapeutic targets in cerebral ischemia-reperfusion.

Sci Rep

December 2024

Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shanxi Province, China.

Promoting vascular endothelial cell regeneration can enhance recovery from cerebral ischemia reperfusion injury (CIRI), but there is a lack of bioinformatic studies on angiogenesis-related biomarkers in CIRI. In this study, we utilized the GSE97537 and GSE61616 datasets from GEO to identify 181 angiogenesis-related genes (ARGs) and analyzed differentially expressed genes (DEGs) between CIRI and control groups. We converted ARGs to 169 rat homologues and intersected them with DEGs to find DE-ARGs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!