Aging is accompanied by altered intercellular communication, deregulated metabolic function, and inflammation. Interventions that restore a youthful state delay or reverse these processes, prompting the search for systemic regulators of metabolic and immune homeostasis. Here we identify MANF, a secreted stress-response protein with immune modulatory properties, as an evolutionarily conserved regulator of systemic and in particular liver metabolic homeostasis. We show that MANF levels decline with age in flies, mice and humans, and MANF overexpression extends lifespan in flies. MANF deficient flies exhibit enhanced inflammation and shorter lifespans, and MANF heterozygous mice exhibit inflammatory phenotypes in various tissues, as well as progressive liver damage, fibrosis, and steatosis. We show that immune cell-derived MANF protects against liver inflammation and fibrosis, while hepatocyte-derived MANF prevents hepatosteatosis. Liver rejuvenation by heterochronic parabiosis in mice further depends on MANF, while MANF supplementation ameliorates several hallmarks of liver aging, prevents hepatosteatosis induced by diet, and improves age-related metabolic dysfunction. Our findings identify MANF as a systemic regulator of homeostasis in young animals, suggesting a therapeutic application for MANF in age-related metabolic diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6727652PMC
http://dx.doi.org/10.1038/s42255-018-0023-6DOI Listing

Publication Analysis

Top Keywords

manf
12
metabolic immune
8
immune homeostasis
8
protects liver
8
liver damage
8
identify manf
8
prevents hepatosteatosis
8
age-related metabolic
8
metabolic
6
liver
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!