A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Insight to aspirin sorption behavior on carbon nanotubes from aqueous solution: Thermodynamics, kinetics, influence of functionalization and solution parameters. | LitMetric

Insight to aspirin sorption behavior on carbon nanotubes from aqueous solution: Thermodynamics, kinetics, influence of functionalization and solution parameters.

Sci Rep

Imam Mohammad Ibn Saud Islamic University (IMSIU), College of Science, Committee on Radiation and Environmental Pollution Protection, Riyadh, Saudi Arabia.

Published: September 2019

The chronic exposure to the pharmaceuticals and personal care products contaminants in water represent a serious public health problem to man and animal. We studied the removal of aspirin (Asp) as an example to these hazardous materials from an aqueous solution using functionalized (FMCNT) and pristine multiwall carbon nanotubes (PMCNT). The characterization of synthetic sorbents was examined with scanning electron energy-dispersive microscopy and transmission electron microscopy. The effects of adsorption time, sorbent mass, solution pH, ionic strength, and temperature were optimized. The functionalization increased the surface area from 151 to 181 m g. Consequently, the adsorption capacity increased from 41 mg g to 58 mg g for PMCNT and FMCNT, respectively. The results showed that the adsorption kinetic follows the pseudo-second-order model with very good agreement. Whereas, the adsorption mechanism study showed a partial agreement with the liquid-film diffusion model on PMCNT and FMCNT at 25 °C and 35 °C, respectively, with acceptable linear regression coefficients. The adsorption isotherm results revealed that the adsorption fits the Freundlich model. The thermodynamic study revealed that, Asp adsorption on both sorbents is exothermic, spontaneous and favorable. FMCNT showed relatively high removal efficiency when compared with the PMCNT when used for most of the conditions investigated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6728315PMC
http://dx.doi.org/10.1038/s41598-019-49331-6DOI Listing

Publication Analysis

Top Keywords

carbon nanotubes
8
aqueous solution
8
pmcnt fmcnt
8
adsorption
7
insight aspirin
4
aspirin sorption
4
sorption behavior
4
behavior carbon
4
nanotubes aqueous
4
solution
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!