Peak alignment of gas chromatography-mass spectrometry data with deep learning.

J Chromatogr A

CSIRO Data61, PO Box 76, Epping, NSW 1710, Australia. Electronic address:

Published: October 2019

We present ChromAlignNet, a deep learning model for alignment of peaks in Gas Chromatography-Mass Spectrometry (GC-MS) data. In GC-MS data, a compound's retention time (RT) may not stay fixed across multiple chromatograms. To use GC-MS data for biomarker discovery requires alignment of identical analyte's RT from different samples. Current methods of alignment are all based on a set of formal, mathematical rules. We present a solution to GC-MS alignment using deep learning neural networks, which are more adept at complex, fuzzy data sets. We tested our model on several GC-MS data sets of various complexities and analysed the alignment results quantitatively. We show the model has very good performance (AUC ∼ 1 for simple data sets and AUC ∼ 0.85 for very complex data sets). Further, our model easily outperforms existing algorithms on complex data sets. Compared with existing methods, ChromAlignNet is very easy to use as it requires no user input of reference chromatograms and parameters. This method can easily be adapted to other similar data such as those from liquid chromatography. The source code is written in Python and available online.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2019.460476DOI Listing

Publication Analysis

Top Keywords

data sets
20
gc-ms data
16
deep learning
12
data
10
gas chromatography-mass
8
chromatography-mass spectrometry
8
complex data
8
alignment
5
gc-ms
5
sets
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!