Background: Salmonella enterica serovar Typhimurium is a common food-borne pathogen. S. enterica uses a type III secretion system encoded within Salmonella pathogenicity island 1 (SPI-1) to invade intestinal epithelial cells. A complex network of interacting transcription factors regulates SPI-1 gene expression. In addition, SPI-1 gene expression is coupled to flagellar gene expression. Both SPI-1 and flagellar gene expression are bistable, with co-existing populations of cells expressing and not expressing these genes. Previous work demonstrated that nutrients could be used to tune the fraction of cells expressing the flagellar genes. In the present study, we tested whether nutrients could also tune the fraction of cells expressing the SPI-1 genes through transcriptional crosstalk with the flagellar genes.

Results: Nutrients alone were not found to induce SPI-1 gene expression. However, when the cells were also grown in the presence of acetate, the concentration of nutrients in the growth medium was able to tune the fraction of cells expressing the SPI-1 genes. During growth in nutrient-poor medium, acetate alone was unable to induce SPI-1 gene expression. These results demonstrate that acetate and nutrients synergistically activate SPI-1 gene expression. The response to acetate was governed by the BarA/SirA two-component system and the response to nutrients was governed by transcriptional crosstalk with the flagella system, specifically through the action of the flagellar regulator FliZ.

Conclusions: Acetate and nutrients are capable of synergistically activating SPI-1 gene expression. In addition, these signals were found to tune the fraction of cells expressing the SPI-1 genes. The governing mechanism involves transcriptional crosstalk with the flagellar gene network. Collectively, these results further our understanding of SPI-1 gene regulation and provide the basis for future studies investigating this complex regulatory mechanism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6727558PMC
http://dx.doi.org/10.1186/s12866-019-1583-7DOI Listing

Publication Analysis

Top Keywords

gene expression
36
spi-1 gene
32
cells expressing
20
transcriptional crosstalk
16
tune fraction
16
fraction cells
16
spi-1
13
crosstalk flagellar
12
flagellar gene
12
expressing spi-1
12

Similar Publications

Objectives: This study aimed to comprehensively investigate the molecular landscape of gastric cancer (GC) by integrating various bioinformatics tools and experimental validations.

Methodology: GSE79973 dataset, limma package, STRING, UALCAN, GEPIA, OncoDB, cBioPortal, DAVID, TISIDB, Gene Set Cancer Analysis (GSCA), tissue samples, RT-qPCR, and cell proliferation assay were employed in this study.

Results: Analysis of the GSE79973 dataset identified 300 differentially expressed genes (DEGs), from which COL1A1, COL1A2, CHN1, and FN1 emerged as pivotal hub genes using protein-protein interaction network analysis.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a neurodegenerative disorder that results from the progressive loss of neurons in the brain followed by symptoms such as slowness and rigidity in movement, sleep disorders, dementia and many more. The different mechanisms due to which the neuronal degeneration occurs have been discussed, such as mutation in PD related genes, formation of Lewy bodies, oxidation of dopamine. This review discusses current surgical treatment and gene therapies with novel developments proposed for PD.

View Article and Find Full Text PDF

Rhabdomyosarcoma (RMS) is a family of phenotypically myogenic paediatric cancers consisting of two major subtypes: fusion-positive (FP) RMS, most commonly involving the PAX3::FOXO1 fusion gene, formed by the fusion of paired box 3 (PAX3) and forkhead box O1 (FOXO1) genes, and fusion-negative (FN) RMS, lacking these gene fusions. In humans, DNA methylation patterns distinguish these two subtypes as well as mutation-associated subsets within these subtypes. To investigate the biological factors responsible for these methylation differences, we profiled DNA methylation in RMS tumours derived from genetically engineered mouse models (GEMMs) in which various driver mutations were introduced into different myogenic lineages.

View Article and Find Full Text PDF

Gastric Cancer Models Developed via GelMA 3D Bioprinting Accurately Mimic Cancer Hallmarks, Tumor Microenvironment Features, and Drug Responses.

Small

January 2025

Department of Surgical Oncology and General Surgery Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.

Current in vitro models for gastric cancer research, such as 2D cell cultures and organoid systems, often fail to replicate the complex extracellular matrix (ECM) found in vivo. For the first time, this study utilizes a gelatin methacryloyl (GelMA) hydrogel, a biomimetic ECM-like material, in 3D bioprinting to construct a physiologically relevant gastric cancer model. GelMA's tunable mechanical properties allow for the precise manipulation of cellular behavior within physiological ranges.

View Article and Find Full Text PDF

Background: Distinctive heterogeneity characterizes diffuse large B-cell lymphoma (DLBCL), one of the most frequent types of non-Hodgkin's lymphoma. Mitochondria have been demonstrated to be closely involved in tumorigenesis and progression, particularly in DLBCL.

Objective: The purposes of this study were to identify the prognostic mitochondria-related genes (MRGs) in DLBCL, and to develop a risk model based on MRGs and machine learning algorithms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!