: Smartphone Thermal Camera Correction Using a Wristband Sensor †.

Sensors (Basel)

Graduate School of Information Science and Technology, Osaka University, Osaka 565-0871, Japan.

Published: September 2019

Thermal images are widely used for various healthcare applications and advanced research. However, thermal images captured by smartphone thermal cameras are not accurate for monitoring human body temperature due to the small body that is vulnerable to temperature change. In this paper, we propose , a dynamic offset correction method for thermal images captured by smartphone thermal cameras. We fully utilize the characteristic that is specific to thermal cameras: the relative temperatures in a single thermal image are highly reliable, although the absolute temperatures fluctuate frequently. To correct the offset error, combines thermal images with a reliable absolute temperature obtained by a wristband sensor based on the above characteristic. The evaluation results in an indoor air-conditioned environment shows that the mean absolute error and the standard deviation of face temperature measurement error decrease by 49.4% and 64.9%, respectively. In addition, Pearson's correlation coefficient increases by 112%, highlighting the effectiveness of . We also investigate the limitation with respect to the ambient temperature where works effectively. The result shows works well in the normal office environment, which is 22.91 °C and above.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6767044PMC
http://dx.doi.org/10.3390/s19183826DOI Listing

Publication Analysis

Top Keywords

thermal images
16
smartphone thermal
12
thermal cameras
12
wristband sensor
8
thermal
8
images captured
8
captured smartphone
8
reliable absolute
8
temperature
5
thermal camera
4

Similar Publications

Devices with a highly nonlinear resistance-voltage relationship are candidates for neuromorphic computing, which can be achieved by highly temperature dependent processes like ion migration. To explore the thermal properties of such devices, Scanning Thermal Microscopy (SThM) can be employed. However, due to the nonlinearity, the high resolution and quantitative method of AC-modulated SThM cannot readily be used.

View Article and Find Full Text PDF

Estimating in vivo power deposition density in thermotherapies based on ultrasound thermal strain imaging.

J Acoust Soc Am

January 2025

Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China.

In thermal therapies, accurate estimation of in-tissue power deposition density (PDD) is essential for predicting temperature distributions over time or regularizing temperature imaging. Based on our previous work on ultrasound thermometry, namely, multi-thread thermal strain imaging (MT-TSI), this work develops an in vivo PDD estimation method. Specifically, by combining the TSI model infinitesimal echo strain filter with the bio-heat transfer theory (the Pennes equation), a finite-difference time-domain model is established to allow online extraction of the PDD.

View Article and Find Full Text PDF

Insights into the electroactive impact of magnetic nanostructures in PVDF composites small-angle neutron scattering.

Nanoscale

January 2025

Physics Centre of Minho and Porto Universities (CF-UM-UP) and LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal.

Poly(vinylidene fluoride) (PVDF) is technologically relevant due to its thermal stability; chemical, mechanical and radiation resistance; transparency; biocompatibility; and ease of processing. Several of those applications are related to its high electroactivity, for which the β-phase of the polymer is its most renowned protagonist. In this context, extensive research has been conducted on the crystallization of PVDF in the β-phase, when processed from melt and from solution.

View Article and Find Full Text PDF

Fluoropolymer-Single Crystal Nanocomposite Based Transducer Fabrication for Bio-Imaging.

Adv Healthc Mater

January 2025

Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli, 140306, India.

Fluoropolymer alone, as an alternative to lead-based piezoelectric materials, has shown multiple challenges to develop useful sensors for solving real-world problems such as photoacoustic, ultrasound pulse echo, and other non-destructive testing. This work demonstrates the fabrication of high frequency and wide bandwidth transducers with fluoropolymer and highly polarizing cubic single crystal Barium titanate (BaTiO) ceramic composite for high resolution in-vivo photo-acoustic and ultrasound imaging. For transducer fabrication, a customized bio-compatible nanocomposite sensor film of PVDF-TrFE (Polyvinylidene fluoride trifluoroethylene)/BaTiO (BTO) is synthesized by drop and dry in heating-cum-electro-poling system for advancing polarization, crystallinity, and higher charge generation.

View Article and Find Full Text PDF

Flexible infrared image fiber bundles (FBs) are capable of delivering thermal images of areas that are difficult for ordinary thermal cameras to access while making the imaging systems compact and lightweight. Thus, FB-based thermal imaging systems show great potential in some important applications, such as infrared endoscopy, aircraft infrared warning, and satellite remote sensing. In most applications, FBs are required to have high overall transmittance (OT) and high spatial resolution (), but the fabrication of such high-performance FBs is still a challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!