β-Glucosidases are enzymes with high importance for many industrial processes, catalyzing the last and limiting step of the conversion of lignocellulosic material into fermentable sugars for biofuel production. However, β-glucosidases are inhibited by high concentrations of the product (glucose), which limits the biofuel production on an industrial scale. For this reason, the structural mechanisms of tolerance to product inhibition have been the target of several studies. In this study, we performed in silico experiments, such as molecular dynamics (MD) simulations, free energy landscape (FEL) estimate, Poisson-Boltzmann surface area (PBSA), and grid inhomogeneous solvation theory (GIST) seeking a better understanding of the glucose tolerance and inhibition mechanisms of a representative GH1 β-glucosidase and a GH3 one. Our results suggest that the hydrophobic residues Y180, W350, and F349, as well the polar one D238 act in a mechanism for glucose releasing, herein called "slingshot mechanism", dependent also on an allosteric channel (AC). In addition, water activity modulation and the protein loop motions suggest that GH1 β-Glucosidases present an active site more adapted to glucose withdrawal than GH3, in consonance with the GH1s lower product inhibition. The results presented here provide directions on the understanding of the molecular mechanisms governing inhibition and tolerance to the product in β-glucosidases and can be useful for the rational design of optimized enzymes for industrial interests.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6766793 | PMC |
http://dx.doi.org/10.3390/molecules24183215 | DOI Listing |
Mol Plant Microbe Interact
January 2025
Max Planck Institute for Biology Tübingen, Max-Planck Ring 5, Tuebingen, Germany, 72076;
Filamentous plant pathogens pose a severe threat to food security. Current estimates suggest up to 23% yield losses to pre- and post-harvest diseases and these losses are projected to increase due to climate change (Singh et al. 2023; Chaloner et al.
View Article and Find Full Text PDFPhytopathology
January 2025
Guizhou University, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Huaxi District, Guiyang, Guizhou Province of China, Guiyang, China, 550025;
Gray mold is an important disease of crops and is widespread, harmful, difficult to control, and prone to developing fungicide resistance. Screening new fungicides is an important step in controlling this disease. Hydroxychloroquine is an anti-inflammatory and anti-malarial agent, which has shown marked inhibitory activity against many fungi in medicine.
View Article and Find Full Text PDFMol Biotechnol
January 2025
Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
Glucanases are widely applied in industrial applications such as brewing, biomass conversion, food, and animal feed. Glucanases catalyze the hydrolysis of glucan to produce the sugar hemiacetal through hydrolytic cleavage of glycosidic bonds. Current study aimed to investigate structural insights of a glucanase from Clostridium perfringens through blind molecular docking, site-specific molecular docking, molecular dynamics (MD) simulation, and binding energy calculation.
View Article and Find Full Text PDFCurr Hypertens Rep
January 2025
Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.
Purpose Of Review: The role of the lymphatic system in clearing extravasated fluids, lipid transport, and immune surveillance is well established, and lymphatic vasculature can provide a vital role in facilitating crosstalk among various organ systems. Lymphatic vessels rely on intrinsic and local factors to absorb and propel lymph from the interstitium back to the systemic circulation. The biological implications of local influences on lymphatic vessels are underscored by the exquisite sensitivity of these vessels to environmental stimuli.
View Article and Find Full Text PDFActa Biotheor
January 2025
Department of Veterinary Parasitology and Entomology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria.
Conflicts within the tsetse fly belt revealed a strong correlation between the dynamics of bovine trypanosomosis and the insurgency involving farmers and herders in Nigeria and parts of West Africa. This study examined the history, causes and influence of farmers-herdsmen conflicts on banditry, terrorism and food security as it relates to the epidemiology of African animal trypanosomosis (AAT). A combination of literature database searches, semi-structured questionnaires, and mathematical modeling was employed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!