This current study aims to study of the thermal behavior of the polyurethane elastomers (PUEs) by varying blends of 1, 4-butanediol and chitosan (CS) into the backbone of polyurethane (PU). The polycaprolactone diol (PCL) was used as a macrodiol while a mixture of CS and 1, 4-butanediol was reacted to extend the polymer. For the preparation of NCO-endcapped polyurethane prepolymer; one equivalent of PCL was reacted with three equivalents of toluene diisocyanate (TDI). The obtained pre-polymer was further extended with CS and 1, 4-butanediol (2 mol) individually and with different blends. The characterization of the structure was determined using FTIR and NMR spectroscopy. The glass transition temperature of prepared polyurethanes was measured by differential scanning calorimetry (DSC). The results obtained showed that, the thermal behavior of PUs was enhanced as the CS contents were increased in the PU backbone. The crystalline behavior of CS increased the hydrophobicity of the prepared PUs. Moreover; the water absorption, contact angle, swelling behavior, work of water adhesion and surface free energy of the synthesized PUs were affected with the addition of chitosan. Finally, it has been concluded resultant chitosan based PU has a potential for biomedical implant i.e., non-absorbable suture.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2019.09.001 | DOI Listing |
FASEB J
January 2025
Department of Radiology, C.J. Gorter MRI Center, Leiden University Medical Center, Leiden, The Netherlands.
Brown adipose tissue (BAT) is a metabolically highly active tissue that dissipates energy stored within its intracellular triglyceride droplets as heat. Others have previously utilized MRI to show that the fat fraction of human supraclavicular BAT (scBAT) decreases upon cold exposure, compared with baseline (i.e.
View Article and Find Full Text PDFLuminescence
January 2025
Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China.
Currently, the development of red Mn-activated fluoride luminescent materials attracts a lot of attention in optical thermometry sensors, solid lighting, display, and plant growth areas. Nevertheless, the thermal stability of Mn-activated fluoride luminescent materials is still a crucial issue. Herein, a new red RbNaVF:Mn luminescent material with outstanding thermal stability was successfully synthesized through the facial coprecipitation method.
View Article and Find Full Text PDFAdv Mater
January 2025
Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
The chirality of magnons, exhibiting left- and right-handed polarizations analogous to the counterparts of spin-up and spin-down, has emerged as a promising paradigm for information processing. However, the potential of this paradigm is constrained by the controllable excitation and transmission of chiral magnons. Here, the magnon transmission is explored in the GdFeO/NiO/Pt structures.
View Article and Find Full Text PDFFoods
December 2024
Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand.
Genetic differences typically cause differences in the structure and function of proteins in meat. The objective of this research was to examine the biochemical characteristics and functional behavior of proteins in fresh composite meat from Thai Ligor hybrid chicken (LC) and commercial broiler chicken (BC). The composite meat samples, which comprise minced breast and thigh without skin from 20 chicken carcasses in a 1:1 (/) ratio, were randomly selected for analysis using the completely randomized design (CRD).
View Article and Find Full Text PDFFoods
December 2024
Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC-CONICET), Universidad Nacional de Córdoba, Av. Filloy S/N, Ciudad Universitaria, Córdoba CP 5000, Argentina.
The morphology of wheat starch granules with different damaged starch (DS) content was analyzed using a particle size analyzer and scanning electron microscopy (SEM); the granular structure was studied using FT-IR spectroscopy and X-ray diffraction (XRD); and the granule-water interaction was evaluated by thermogravimetric analysis (TGA) and dynamic vapor sorption (DVS). The increase in the level of DS shifted the population of B-type granules towards larger particle diameters and shifted the population of A-type granules towards smaller particle diameters. The appearance of the surface of the starch-damaged granules was rough and flaky (SEM images).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!