Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The chloride channels, sodium and bicarbonate channels, and aquaporin water channels are coordinated to maintain the airway surface liquid that is necessary for mucociliary clearance. The general mechanism for the transport of electrolytes and fluids depends mainly on the differential expression and distribution of ion transporters and pumps. Ions and water move through the paracellular or transcellular pathways. The transcellular route of electrolyte transport requires an active transport (dependent on ATP) or passive (following electrochemical gradients) of ions. The paracellular pathway is a passive process that is ultimately controlled by the predominant transepithelial electrochemical gradients. Cystic fibrosis is a hereditary disease that is produced by mutations in the gene that encode cystic fibrosis transmembrane conductance regulatory protein (CFTR) that acts as a chloride channel and performs functions of hydration of periciliary fluid and maintenance of luminal pH. The dysfunction of the chlorine channel in the respiratory epithelium determines an alteration in the bronchial secretions, with an increase in its viscosity and alteration of the mucociliary clearance and that associated with infectious processes can lead to irreversible lung damage. CFTR dysfunction has also been implicated in the pathogenesis of acute pancreatitis, chronic obstructive pulmonary disease, and bronchial hyperreactivity in asthma. There are drugs that exploit physiological mechanisms in the transport of ions with a therapeutic objective.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!