First Morphological and Molecular Report of on Strawberry Plants in Switzerland.

Plant Dis

Agroscope, Research Division Plant Protection, Phytopathology and Zoology in Fruit and Vegetable Production, Wädenswil, Switzerland.

Published: November 2019

Foliar nematodes represent a minor feeding group within the genus Fischer, 1894. The facultative plant parasitic species can cause crinkling of leaves, reduced vigor, and stunting of agricultural and ornamental plants. Here we report the first finding of in leaves, crowns, and roots of strawberry plants collected in Switzerland in 2018. Species identification was confirmed by morphological and morphometric characterization supported by molecular barcoding of 18S ribosomal RNA (18S), 28S ribosomal RNA (28S), and cytochrome oxidase I (COI) gene fragment analyses. Phylogenetic analysis of 18S indicated that was grouped within close distance to , a well-known foliar nematode affecting strawberry plants. Furthermore, the newly generated molecular barcodes of the partial 28S and COI of will support species identification in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-07-18-1241-REDOI Listing

Publication Analysis

Top Keywords

strawberry plants
12
species identification
8
ribosomal rna
8
morphological molecular
4
molecular report
4
report strawberry
4
plants
4
plants switzerland
4
switzerland foliar
4
foliar nematodes
4

Similar Publications

FvPHR1 Improves the Quality of Woodland Strawberry Fruit by Up-Regulating the Expression of FvPHT1;7 and FvSWEET9.

Plant Cell Environ

January 2025

Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning province, China.

Article Synopsis
  • Phosphorus is crucial for plant growth, but excessive fertilizer use can lead to environmental issues; plants manage phosphate supply through intricate signaling pathways.
  • The study focused on the role of PHR1 in Fragaria vesca (strawberries), showing that overexpressing the FvPHR1 gene enhances phosphate uptake and photosynthesis efficiency by activating specific downstream genes.
  • FvPHR1 also aids in sugar transport from leaves to fruit, suggesting its complex role in improving strawberry fruit quality and providing insights for developing better cultivars with efficient phosphorus utilization and higher sugar content.
View Article and Find Full Text PDF

Strawberry fruits are highly perishable and have a limited shelf life. Therefore, effective methods such as essential oils (EOs) and edible coatings are required to mitigate spoilage and maintain fruit quality during storage. In the current study, Echinophora platyloba EO was extracted and subsequently formulated into a nanoemulsion.

View Article and Find Full Text PDF

Protein S-acyl transferases (PATs) are a family of enzymes that catalyze protein S-acylation, a post-translational lipid modification involved in protein membrane targeting, trafficking, stability, and protein-protein interaction. S-acylation plays important roles in plant growth, development, and stress responses. Here, we report the genome-wide analysis of the family genes in the woodland strawberry (), a model plant for studying the economically important Rosaceae family.

View Article and Find Full Text PDF

Strawberries are valued globally for their nutritional, aesthetic, and economic benefits. Optimizing blue-to-red LED ratios and nitrogen levels is essential for sustainable indoor strawberry cultivation. This factorial study investigated the effects of blue and red LED combination ratios (L1; 1:3, L2; 1:4, and L3; 1:6) and nitrogen levels (N1; 100 and N2; 200 mg/L) on the physiology and performance of strawberries in a plant factory.

View Article and Find Full Text PDF

Background: Strawberry (Fragaria × annanasa Duch.) is an important economic fruit worldwide, whose growth and development are often hindered by water deficiency. 5-Aminolevulinic acid (ALA), a natural plant growth regulator, has been suggested to mitigate the osmotic damages by promoting root water absorption, osmotic adjustment, photosynthetic capacity, and antioxidant improvement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!