In this work, a facile and simple yet effective method to generate intrinsic autonomous self-healing polymers was developed, leading to new materials that can be easily fine-tuned both mechanically and chemically. The new materials were designed to incorporate two dynamic and reversible types of chemical bonds, namely dynamic imine and metal-coordinating bonds, to enable autonomous self-healing, controlled degradability and ultra-high tunable stretchability (up to 800% strain) based on the ratio of metal to ligand incorporated. Through an easy condensation reaction, imine bonds are generated at the end-termini of a short siloxane chain. The new dynamic system was characterized by a variety of techniques, including tensile-pull strain testing, atomic force microscopy and UV-Vis spectroscopy, which showed that the highly dynamic imine bonds, combined with coordination with Fe ions, allow for the material to regenerate 88% of its mechanical strength after physical damage. The materials were also controlled to be degraded in mild acidic conditions. Lastly, application in self-healable electronics was demonstrated through the fabrication of a capacitive-based pressure sensor, which shows good sensitivity and dynamic response (∼0.33 kPa) before and after healing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9sm01254k | DOI Listing |
ACS Mater Lett
January 2025
Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Ohio 45433, United States.
Photocurable self-healing elastomers are promising candidates for producing complex soft devices that can mend damage. However, the practicality of these materials is limited by reliance on external stimuli, custom synthesis, manual realignment, and multihour healing cycles. This paper introduces a tough 3D-printable hybrid acrylate/thiol-ene elastomer (prepared with commercially available precursors) that exhibits nearly instantaneous damage repair in the absence of external stimuli.
View Article and Find Full Text PDFBiomaterials
December 2024
Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China. Electronic address:
Post-extraction alveolar bone resorption invariably compromises implant placement and aesthetic restoration outcomes. Current non-resorbable membranes exhibit limited efficacy in alveolar ridge preservation (ARP) due to insufficient cell recruitment and osteoinductive capabilities. Herein, we introduce a multifunctional electroactive membrane (PPy-BTO/P(VDF-TrFE), PB/PT) designed to spatiotemporally regulate cell migration and osteogenesis, harmonizing with the socket healing process.
View Article and Find Full Text PDFShanghai Kou Qiang Yi Xue
October 2024
Shihezi University School of Medicine; Department of Prosthodontics, Urumqi Stomatological Hospital. Urumqi 830002, Xinjiang Uygur Autonomous Region, China. E-mail:
Purpose: To analyze the effect of n-HA/chitosan/minocycline composite scaffold in the animal model of peri-implant inflammatory bone defect.
Methods: Twelve healthy adult male beagle dogs were selected to construct the model of peri-implant inflammatory bone defect. The control group(n=6) underwent bone regeneration by alveolar self-healing without any treatment in the bone defect area.
Adv Healthc Mater
December 2024
College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China.
Carbohydr Polym
February 2025
College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; Jilin Aodong Yanbian Pharmaceutical Co., Ltd, Yanbian Korean Autonomous Prefecture 133000, China. Electronic address:
Difficulty in diabetic wound healing presents a significant challenge in clinical practice. This study developed a hydrogel utilizing oxidized sodium alginate (OSA) and carboxymethyl chitosan (CMCS) as the matrix. Astilbin (ASB), known for its antioxidant properties, was incorporated into Astilbin liposome (AL) using a thin film dispersion method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!