Stokesian dynamics of sedimenting elastic rings.

Soft Matter

Institute of Fundamental Technological Research, Polish Academy of Sciences, Paw-ińskiego 5B, 02-106, Warsaw, Poland.

Published: September 2019

We consider elastic microfilaments which form closed loops. We investigate how the loops change shape and orientation while settling under gravity in a viscous fluid. Loops are circular at the equilibrium. Their dynamics are investigated numerically based on the Stokes equations for the fluid motion and the bead-spring model of the microfilament. The Rotne-Prager approximation for the bead mobility is used. We demonstrate that the relevant dimensionless parameter is the ratio of the bending resistance of the filament to the gravitation force corrected for buoyancy. The inverse of this ratio, called the elasto-gravitation number B, is widely used in the literature for sedimenting elastic linear filaments. We assume that B is of the order of 104-106, which corresponds to easily deformable loops. We find out that initially tilted circles evolve towards different sedimentation modes, depending on B. Very stiff or stiff rings attain almost planar, oval shapes, which are vertical or tilted, respectively. More flexible loops deform significantly and converge towards one of several characteristic periodic motions. These sedimentation modes are also detected when starting from various shapes, and for different loop lengths. In general, multi-stability is observed: an elastic ring converges to one of several sedimentation modes, depending on the initial conditions. This effect is pronounced for very elastic loops. The surprising diversity of long-lasting periodic motions and shapes of elastic rings found in this work gives a new perspective for the dynamics of more complex deformable objects at micrometer and nanometer scales, sedimenting under gravity or rotating in a centrifuge, such as red blood cells, ring polymers or circular DNA.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9sm00598fDOI Listing

Publication Analysis

Top Keywords

sedimentation modes
12
sedimenting elastic
8
elastic rings
8
modes depending
8
periodic motions
8
elastic
6
loops
6
stokesian dynamics
4
dynamics sedimenting
4
rings consider
4

Similar Publications

The optimal design of cement slurry by balancing various cement additives and cement is critical for effective oil well cementation job. However, given adverse circumstances of application, existing additives may not be sufficient to perform suitably in challenging conditions, leading to premature cement hydration, formation of microcracks, and gas channeling pathways. Thus, this study explores the use of a single-step silica nanofluid (NP size: 5-10, 90-100, and 250-300 nm and concentration: 1, 3, and 5 wt %) as an additive and explores its effect on thickening time, fluid loss, and rheological behavior of class G cement slurry at high-pressure and high-temperature (HPHT) conditions (135 °C and 3625 psi).

View Article and Find Full Text PDF
Article Synopsis
  • Hospital and nursing-care-acquired infections are increasingly problematic, especially for older adults, with aerosol transmission of pathogens being a key concern during epidemics like COVID-19.
  • Understanding how airborne particles carry pathogens is vital for controlling diseases like influenza and SARS-CoV-2, as smaller particles can stay airborne and contribute to transmission.
  • The review discusses methods for studying aerosol particle behavior in the lungs, various numerical lung models, and effective air purification techniques to enhance safety in healthcare settings, particularly for vulnerable elderly populations.
View Article and Find Full Text PDF

Pollution of farmland by heavy metals threatens food security and human health. In addition, heavy metals in soil could infiltrate into groundwater to influence the water quality and safety of drinking water. However, the relationship between heavy metal pollution in soil and groundwater is still not clear.

View Article and Find Full Text PDF

Two-stage injection of polymer and microsand during ballasted flocculation for treating kaolin waters with or without humic acid: Floc evolutional characteristics, performance and mechanisms.

Water Res

August 2024

Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency (Ministry of Education), College of Civil Engineering, Hunan University, Changsha 410082, PR China.

Ballasted flocculation is regarded as a most promising water treatment technology in aspects of retrofit and high-rate applications. To deep understand the incorporation behaviors of ballasting agent into ballasted floc growth, two distinct injection modes (namely a two-stage injection of polyacrylamide (PAM) alone, and a two-stage injection of both PAM and microsand) were developed in this study. Then, ballasted flocculation tests of kaolin and kaolin-HA (humic acid) waters were conducted at varying split ratios for fixed total dosages of both PAM and microsand.

View Article and Find Full Text PDF

In preparing space and microgravity experiments, the utilization of ground-based facilities is common for initial experiments and feasibility studies. One approach to simulating microgravity conditions on Earth is to employ a random positioning machine (RPM) as a rotary bioreactor. Combined with a suitable low-mass model system, such as cell cultures, these devices simulating microgravity have been shown to produce results similar to those obtained in a space experiment under real microgravity conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!