Newcastle disease virus (NDV) causes huge economic loss to the poultry industry due to high mortality and morbidity. The present study aimed to assess the protective role of novel phosphorylated analogue ABC-1 in vivo in NDV-infected chickens through the inhibition of fusion protein. Both NDV-induced oxidative damage and protective role of novel phosphorylated ABC-1 were evaluated in vital organs such as the liver and lung of chickens. Enzyme linked immunosorbent assay (ELISA) results showed that protein oxidation and nitration levels were significantly raised in NDV-infected tissues compared to healthy controls, whereas these levels were reduced significantly (P < 0.05) in birds treated with phosphorylated compounds compared to the NDV-infected group alone. Additional investigation with double immunofluorescence showed that the large amount of immuno colocalization and Western blot analysis also confirmed this observation through its band pattern in NDV-infected birds compared to healthy birds, whereas these alterations were reduced in treatment with novel phosphorylated ABC-1. The expression of fusion glycoprotein was studied by immuno colocalization, PCR, and flow cytometry, and results demonstrated that the novel phosphorylated analogues reduced the expression of fusion glycoprotein. These results put forth that novel phosphorylated ABC-1 protects chickens from NDV-induced pathogenesis, protein oxidation/nitration, and exerts potent antiviral activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7161887PMC
http://dx.doi.org/10.1002/bab.1814DOI Listing

Publication Analysis

Top Keywords

novel phosphorylated
20
phosphorylated abc-1
12
analogue abc-1
8
newcastle disease
8
disease virus
8
protective role
8
role novel
8
compared healthy
8
immuno colocalization
8
expression fusion
8

Similar Publications

Objective: Thyroid cancer (TC) therapy, which is routinely used at present, can improve patients' survival rates. However, lymph node metastasis results in a higher degree of TC malignancy in patients who experience recurrence and/or death. The elucidation of new mechanisms of TC metastasis can help identify new therapeutic targets.

View Article and Find Full Text PDF

Unraveling the protein kinase C/NDRG1 signaling network in breast cancer.

Cell Biosci

December 2024

Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy.

N-myc downstream-regulated gene 1 (NDRG1) is a member of the NDRG family of intracellular proteins and plays a central role in a wide range of biological processes including stress response, differentiation, and metabolism. The overexpression of NDRG1 is an indicator of poor prognosis in various types of cancer. Here, we found that NDRG1 is an independent prognostic marker of poor outcome in breast cancer (BC).

View Article and Find Full Text PDF

Skeletal muscle health relies on the production of adenosine triphosphate (ATP) in the mitochondria. ATP production is accompanied by oxidative phosphorylation, which generates reactive oxygen species (ROS). When there is an imbalance in ROS levels, oxidative stress and subsequent mitochondrial dysfunction, mitochondrial myopathies including sarcopenia, chronic progressive external ophthalmoplegia, and proximal myopathy can result.

View Article and Find Full Text PDF

Segetalin B Promotes Bone Formation in Ovariectomized Mice by Activating PLD1/SIRT1 Signaling to Inhibit γ-Secretase-Mediated Notch1 Overactivation.

J Steroid Biochem Mol Biol

December 2024

Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China. Electronic address:

Segetalin B (SB) has shown promise in mitigating osteoporosis in ovariectomized (OVX) mice, though its underlying mechanisms remain unclear. This study investigates how SB promotes bone formation through Phospholipase D1 (PLD1) activation in OVX models. In vitro, bone marrow-derived mesenchymal stem cells (BMSCs) from OVX mice were cultured for osteogenic differentiation.

View Article and Find Full Text PDF

Background: Maintaining autophagic homeostasis has been proved to play an important role in Alzheimer's disease.

Object: The aim of this study was to investigate the effect of Fuzhisan(FZS) on autophagic function in Alzheimer's disease and to elucidate its potential mechanism through the P62 regulatory pathways.

Methods: FZS was extracted by water extraction-rotary evaporation method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!