Purpose Of Review: To review the latest reports of the contributions of the endothelial mineralocorticoid receptor to endothelial dysfunction and hypertension to begin to determine the clinical potential for this pathway for hypertension treatment.
Recent Findings: Endothelial mineralocorticoid receptor expression is sex-specifically increased in female mice and humans compared with males. Moreover, the expression of endothelial mineralocorticoid receptors is increased by endothelial progesterone receptor activation and naturally occurring fluctuations in progesterone levels (estrous, pregnancy) predict endothelial mineralocorticoid receptor expression levels in female mice. These data follow many previous reports that have indicated that endothelial mineralocorticoid receptor deletion is protective in the development of obesity- and diabetes-associated endothelial dysfunction in female mouse models. These studies have more recently been followed up by reports indicating that both intact endothelial mineralocorticoid receptor and progesterone receptor expression are required for obesity-associated, leptin-mediated endothelial dysfunction in female mice. In addition, the intra-endothelial signaling pathway for endothelial mineralocorticoid receptors to induce dysfunction requires the intact expression of α-epithelial sodium channels (αENaC) in endothelial cells in females. Endothelial mineralocorticoid receptors are sex-specifically upregulated in the vasculature of females, a sex difference which is driven by endothelial progesterone receptor activation, and increased activity of these endothelial mineralocorticoid receptors is a crucial mediator of endothelial dysfunction, and potentially hypertension, in obese female experimental models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6878110 | PMC |
http://dx.doi.org/10.1007/s11906-019-0981-4 | DOI Listing |
Int J Mol Sci
January 2025
Department of Hypertension and Diabetology, Medical University of Gdańsk, 80-214 Gdańsk, Poland.
Aldosterone, the primary adrenal mineralocorticoid hormone, as an integral part of the renin-angiotensin-aldosterone system (RAAS), is crucial in blood pressure regulation and maintaining sodium and potassium levels. It interacts with the mineralocorticoid receptor (MR) expressed in the kidney and promotes sodium and water reabsorption, thereby increasing blood pressure. However, MRs are additionally expressed in other cells, such as cardiomyocytes, the endothelium, neurons, or brown adipose tissue cells.
View Article and Find Full Text PDFSleep
December 2024
Department of Biomedical Sciences, University of Missouri; Columbia, MO, United States.
Study Objectives: Obstructive sleep apnea (OSA), characterized by intermittent hypoxia (IH), and is associated with increased cardiovascular mortality that may not be reduced by standard therapies. Inappropriate activation of the renin-angiotensin-aldosterone system occurs in IH, and mineralocorticoid receptor (MR) blockade has been shown to improve vascular outcomes in cardiovascular disease. Thus, we hypothesized that MR inhibition prevents coronary and renal vascular dysfunction in mice exposed to chronic IH.
View Article and Find Full Text PDFKidney360
December 2024
Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan.
Card Fail Rev
November 2024
Department of Cardiology, King George's Medical University Uttar Pradesh, India.
Bone Res
November 2024
Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
Osteonecrosis of the femoral head (ONFH) is a common complication of glucocorticoid (GC) therapy. Recent advances demonstrate that sympathetic nerves regulate bone homeostasis, and GCs lower the sympathetic tone. Here, we show that the dramatically decreased sympathetic tone is closely associated with the pathogenesis of GC-induced ONFH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!