The present study aimed to investigate the effects of vascular endothelial growth factor (VEGF) and insulin‑like growth factor‑1 (IGF‑1) on the proliferation, migration and differentiation of human carious dental pulp stem cells (hCDPSCs), and to elucidate the underlying mechanism(s). Cell counting kit‑8 assay was used to detect the effect of different concentrations of IGF‑1 and VEGF on the proliferation of hCDPSCs. Transwell assay was used to detect the migratory ability of the hCDPSCs. Alizarin red and alkaline phosphatase (ALP) staining were used to detect the osteogenic ability of hCDPSCs, whereas the angiogenic ability of the hCDPSCs was tested by tube formation assay. Reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and western blotting were used to detect the expression levels of associated genes and proteins. IGF‑1 (100 ng/ml) or VEGF (25 ng/ml) alone were revealed to be able to promote proliferation and migration of hCDPSCs; however, the combined use of IGF‑1 and VEGF enhanced this effect when compared with the use of either agent in isolation. Alizarin red and ALP staining revealed that the use of either VEGF or IGF‑1 alone did not result in any significant effects, whereas their use in combination promoted the osteogenic differentiation of hCDPSCs. In addition, the RT‑qPCR and western blotting analyses revealed that the expression levels of Runt‑related transcription factor 2 (RUNX2), bone sialoprotein (BSP) and ALP were increased upon combined treatment of the cells with VEGF and IGF‑1. The expression levels of VEGF and plateletderived growth factor (PDGF) in hCDPSCs were enhanced upon treatment with either VEGF or IGF‑1 in isolation, with greater effects observed when VEGF and IGF‑1 were added in combination, indicating that VEGF and IGF‑1 may exert a synergistic role in these events. Further experiments revealed that the combination of VEGF and IGF‑1 led to an activation of the AKT signaling pathway. The proliferation and angiogenesis of hCDPSCs were also shown to be more effective compared with treatment with either VEGF or IGF‑1 in isolation. Taken together, the present study has demonstrated that the combined use of VEGF and IGF‑1 leads to an increase in the proliferation, migration, osteogenesis and angiogenesis of hCDPSCs and, furthermore, these signaling molecules may mediate their effects via activation of the AKT signaling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.3892/mmr.2019.10606DOI Listing

Publication Analysis

Top Keywords

vegf igf‑1
32
proliferation migration
16
vegf
13
growth factor
12
igf‑1
12
ability hcdpscs
12
expression levels
12
hcdpscs
10
effects vascular
8
vascular endothelial
8

Similar Publications

Autism spectrum disorder (ASD) is a prevalent neurodevelopmental condition affecting a substantial number of children globally, characterized by diverse aetiologies, including genetic and environmental factors. Emerging research suggests that neurovascular dysregulation during development could significantly contribute to autism. This review synthesizes the potential role of vascular abnormalities in the pathogenesis of ASD and explores insights from studies on valproic acid (VPA) exposure during neural tube development.

View Article and Find Full Text PDF

Neovascular age-related macular degeneration (nAMD), characterized by choroidal neovascularization (CNV), is one of the leading causes of severe visual impairment and irreversible vision loss around the world. Subretinal fibrosis (SRF) contributes to the incomplete response to anti-vascular endothelial growth factor (VEGF) treatment and is one of the main reasons for long-term poor visual outcomes in nAMD. Reducing SRF is urgently needed in the anti-VEGF era.

View Article and Find Full Text PDF

This case series describes responses to faricimab treatment in opposite directions in different fluid compartments in four patients with polypoidal choroidal vasculopathy (PCV). Despite reductions in retinal fluid (SRF) and stable visual acuity following treatment, all patients developed retinal pigment epithelium (RPE) elevation. Over a 12-15 months follow-up, three patients exhibited a gradual decrease in RPE elevation, with one case resolving completely.

View Article and Find Full Text PDF

Sensitive detection of disease-specific biomarkers with high accuracy is crucial for early diagnosis, therapeutic monitoring, and understanding underlying pathological mechanisms. Traditional methods, such as immunohistochemistry and enzyme-linked immunosorbent assays (ELISA), face limitations due to the complex and expensive production of antibodies. In this context, aptamers, short oligonucleotides with advantages like easy synthesis, low cost, high specificity, and stability, have emerged as promising alternatives for biomolecular sensing.

View Article and Find Full Text PDF

Sorafenib promotes Treg cell differentiation to compromise its efficacy via VEGFR/AKT/Foxo1 signaling in hepatocellular carcinoma.

Cell Mol Gastroenterol Hepatol

December 2024

Department of Medical Oncology, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, Zhejiang 310020, China.

Unlabelled: Our study revealed that sorafenib (Sora) induced the formation of an immunosuppressive tumor microenvironment in hepatocellular carcinoma (HCC) by promoting the differentiation of regulatory T (Treg) cells through VEGFR/AKT/Foxo1 signaling, leading to compromised Sora efficacy. Importantly, combination treatment with an anti-CD25 antibody or the Foxo1 inhibitor AS1842856 inhibited Treg cell differentiation and increased the therapeutic efficacy of Sora in HCC.

Background & Aims: Sora is the first-line drug for advanced HCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!