Glycylglycine plays critical roles in the proliferation of spermatogonial stem cells.

Mol Med Rep

State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China.

Published: October 2019

Glial cell line‑derived neurotrophic factor (GDNF) is critical for the proliferation of spermatogonial stem cells (SSCs), but the underlying mechanisms remain poorly understood. In this study, an unbiased metabolomic analysis was performed to examine the metabolic modifications in SSCs following GDNF deprivation, and 11 metabolites were observed to decrease while three increased. Of the 11 decreased metabolites identified, glycylglycine was observed to significantly rescue the proliferation of the impaired SSCs, while no such effect was observed by adding sorbitol. However, the expression of self‑renewal genes, including B‑cell CLL/lymphoma 6 member B, ETS variant 5, GDNF family receptor α1 and early growth response protein 4 remained unaltered following glycylglycine treatment. This finding suggests that although glycylglycine serves an important role in the proliferation of SSCs, it is not required for the self‑renewal of SSCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6755143PMC
http://dx.doi.org/10.3892/mmr.2019.10609DOI Listing

Publication Analysis

Top Keywords

spermatogonial stem
8
stem cells
8
sscs
5
glycylglycine
4
glycylglycine plays
4
plays critical
4
critical roles
4
roles the proliferation
4
the proliferation spermatogonial
4
cells glial
4

Similar Publications

CENP-E haploinsufficiency causes chromosome misalignment and spindle assembly checkpoint activation in the spermatogonia.

Andrology

December 2024

Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China.

Background: The establishment of kinetochore-microtubule attachment is essential for error-free chromosome alignment and segregation during cell division. Defects in chromosome alignment result in chromosome instability, birth defects, and infertility. Kinesin-7 CENP-E mediates kinetochore-microtubule capture, chromosome alignment, and spindle assembly checkpoint in somatic cells, however, mechanisms of CENP-E in germ cells remain poorly understood.

View Article and Find Full Text PDF

Single-cell RNA sequencing reveals the critical role of alternative splicing in cattle testicular spermatagonia.

Biol Direct

December 2024

Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China.

Spermatogonial stem cells (SSCs) form haploid gametes through the precisely regulated process of spermatogenesis. Within the testis, SSCs undergo self-renewal through mitosis, differentiation, and then enter meiosis to generate mature spermatids. This study utilized single-cell RNA sequencing on 26,888 testicular cells obtained from five Holstein bull testes, revealing the presence of five distinct germ cell types and eight somatic cell types in cattle testes.

View Article and Find Full Text PDF

Characterisation and hierarchy of the spermatogonial stem cell compartment in human spermatogenesis by spectral cytometry using a 16-colors panel.

Cell Mol Life Sci

December 2024

Université Paris-Saclay, CEA, UMR Stabilité Génétique Cellules Souches Et Radiations, iRCM/IBFJ, Laboratoire Des Cellules Souches Germinales, 92265, Fontenay-Aux-Roses, France.

About one in six couples experience fertility problems, and male infertility accounts for about half of these cases. Spermatogenesis originates from a small pool of spermatogonial stem cells (SSCs), which are of interest for the treatment of infertility but remain poorly characterised in humans. Using multiparametric spectral flow cytometric analysis with a 16-colours (16-C) panel of cell markers, we identify novel markers of SSCs and provide insights into unravelling and resolving the heterogeneity of the human spermatogonial cells.

View Article and Find Full Text PDF

SDF-1/CXCR4 axis maintains porcine prospermatogonia undifferentiated state through regulation of transcription suppressor PLZF.

Theriogenology

December 2024

Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China. Electronic address:

Prospermatogonia (ProSGs), the progenitors of spermatogonial stem cells in neonatal testes, undergo critical migration to the testicular microenvironment-a fundamental process for testicular development and subsequent spermatogenic capacity. The SDF-1/CXCR4 chemokine axis serves as an essential molecular guidance mechanism, directing ProSGs toward the basal membrane of seminiferous tubules. Nevertheless, the precise molecular mechanisms governing this axis remain incompletely understood.

View Article and Find Full Text PDF

Mammalian spermatogenesis is a tightly controlled cellular process including spermatogonial development and differentiation, meiosis of spermatocyte, and the morphological specification of haploid spermatozoa, during which the post-transcriptional gene regulations are vital but poorly understood. Nonsense-mediated mRNA decay (NMD), a highly conserved post-transcriptional regulatory mechanism of gene expression in eukaryotes, recently emerges as a licensing mechanism in cell fate transition, including stem cell differentiation and organogenesis. The function of NMD in spermatogonial development remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!